

 [image: KookaBlockly Logo]

Welcome to the KookaBlockly Reference Guide!

KookaBlockly is a powerful standalone visual editor designed for creating program scripts for Kookaberry and related microprocessors.
This editor operates on a drag-and-drop interface, making it beginner-friendly and highly intuitive.

This document describes how to use to the KookaBlockly visual scripting tool.

KookaBlockly is part of the KookaSuite script editing toolset which was commissioned by the AustSTEM Foundation
and created by Damien George for the Kookaberry.

This guide is for KookaBlockly v1.10.0.

The document is in TWO parts:

	Working with KookaBlockly - relates to KookaBlockly set-up, basic screen displays and usage.

	A Reference Document for the visual functional blocks in KookaBlockly.

Contents

	Part 1 - Working With KookaBlockly
	Introduction to KookaBlockly
	KookaBlockly: Visual Programming Editor for Kookaberry Microprocessor Boards

	Key Features

	Programming With KookaBlockly

	AustSTEM Learning Hub

	Installing KookaBlockly
	Downloading KookaSuite

	Installing KookaSuite on Microsoft Windows

	Installing KookaSuite on MacOS

	Installing KookaSuite on Raspberry Pi

	Script Folders

	KookaBlockly Updates

	Editing KookaBlockly Scripts Using KookaIDE

	Using the KookaBlockly Application
	Version

	Resize / Exit

	Workspace

	Blocks Palette

	Script Controls

	Inspection Buttons

	Connection

	Script Selection

	Scroll Bars, Centre, Zoom and Trash

	KookaBlockly Conventions
	Block Shapes

	Block Configuration

	Right-clicking

	Text Delimiters

	Deleting Blocks

	Part 2 - KookaBlockly Function Blocks Reference
	Control
	On Start

	Scheduled Loop

	Every Loop

	Exit Program

	Sleep

	Time (s)

	Time (ms)

	Clock
	Internal Clock
	Get Clock – Simple Time

	Get Clock - Extended Time

	Set Clock from Character String

	External Clock
	External Clock’s Pins Connections

	Get External Clock - Simple Time

	Get External Clock – Extended Time

	Set Internal Clock from External Clock

	Set External Clock from Internal Clock

	Set External Clock from Character String

	Display
	Kookaberry Display

	Text coordinates

	Display Clear

	Display Show

	Display Set Font

	Display Print

	Display Print-and

	Display Pixel

	Display Line

	Display Rectangle

	Display Text

	Display Image

	Buttons
	When Button Was Pressed

	When Button Is Pressed

	Button was pressed

	Button is pressed

	Button to Exit Program

	LEDs
	Turn ON LED

	Turn OFF LED

	Toggle LED

	Set NeoPixel

	Pins
	Pin Turn ON

	Pin Turn OFF

	Pin Toggle

	Set Pin to Digital Value

	Get Pin Digital Value

	Get Pin Voltage

	Get Pin Voltage as Percentage of Maximum

	Set Pin to Voltage

	Set Pin to Percentage of Maximum

	Pin – Pulse Width Modulation (PWM)

	Sensors
	Internal Sensors
	Get Accelerometer (raw)

	Get Accelerometer (scaled)

	Get Compass

	External Sensors
	Sensors’ Pins Connections

	Get Temperature from DS18x20

	Get Temperature from NTC

	Get Temperature or Humidity from DHT11 or DHT22

	Get Temperature / Humidity / Pressure from BME280
	About The BME280 Sensor

	Get Acceleration / Compass Strength from LSM303
	About the LSM303 Sensor

	Get LUX from VEML7700
	About the VEML7700 Sensor

	Get Power / Voltage / Current from INA219
	About the INA219 Sensor

	Get Soil Moisture
	About Soil Moisture Sensors

	More Sensor Learning Resources

	Actuators
	Actuators’ Pins Connections

	Set Servo to Angle

	Set Servo to Angle Taking Seconds

	Set Servo to Speed

	Set Servo to Speed Taking Seconds

	More Actuator Learning Resources

	Radio
	Internal Radio
	When Radio Receive

	Radio Read

	Radio Send

	Set Radio channel

	Set Radio Parameter

	External Radio
	When HC-12 Receive

	HC-12 Read

	HC-12 Send

	HC-12 Send and

	HC-12 Set Channel

	Logging
	Clear File

	Log To File

	Boolean
	Comparison

	Boolean And / Or

	Not

	True / False

	Null

	Test If

	If–Else
	If-Do

	If-Do-Else-Do

	If-Do-Else If-Do-Else-Do

	If-Do Configuration

	Loops
	Loop Repeat

	Loop Repeat While / Until

	Count With Variable From-To-By
	Count With Variable Example

	For Each Item In List

	Break / Continue Loop

	Strings
	Text

	Format as Integer

	Format as Floating Point

	Convert to Integer

	Convert to Float

	Lists
	Create List
	Create List Example

	Create List With Item Repeated No. of Times

	Length Of List

	Is Empty

	In List Find First / Last Occurrence of Item
	In List Find Example

	In List Get / Remove Item
	In List Get / Remove Examples

	In List Set / Insert Item
	In List Set / Insert Example

	In List Get Sub-List
	Get Sub-List Example

	Make List / Text With Delimiter
	Make List / Text Examples

	Sort List
	Sort List Example

	Math
	Number
	Number Example

	Arithmetic
	Arithmetic Example

	Multiply and Add

	Scale Function
	Scale Example

	Math Function

	Trigonometric Function

	Special Constants

	Number Property Test

	Round Number

	List Operations
	List Operations Example

	Remainder

	Constrain

	Random Integer

	Random Fraction

	Atan2 of X

	Variables
	Create Variable

	Set Variable

	Change Variable

	Variable Value

	Functions
	Define Function
	Define Inputs

	Function Name

	Function Description

	Define Function with Return Value

	If Condition Return

	Advanced
	Python Value

	Python Action

	Advanced Example

	Glossary of Terms

	Example Scripts:

	All the scripts used in this guide are available for downloading from Github and following the instructions on the README[#1] page:

	Errata:

	If errors or issues are found in the KookaBlockly Reference Guide please post an issue on GitHub[#2].

	Copyright:

	Blockly is a library from Google for building beginner-friendly block-based programming languages.

Kookaberry and Kooka are trademarks of Kookaberry Pty Ltd, Australia.

The Kooka Firmware release v1.10.0 and KookaSuite were created by Damien George (George Electronics Pty Ltd – MicroPython)
in collaboration with Kookaberry Pty Ltd and the AustSTEM Foundation Ltd.

Footnotes

[#1]
https://github.com/TDStrasser/KookaBlockly-Reference/tree/9823056ad87da55329b65082e39b0654e418a5e6/examples

[#2]
https://github.com/TDStrasser/KookaBlockly-Reference/issues

Part 1 - Working With KookaBlockly

In this Part 1 of the KookaBlockly Reference Guide, KookaBlockly in introduced, then instructions are given on how
the KookaSuite software package, is installed on a personal computer, how KookaBlockly is used,
and finally the conventions used by KookaBlockly are explained.

Contents of Part 1

	Introduction to KookaBlockly
	KookaBlockly: Visual Programming Editor for Kookaberry Microprocessor Boards

	Key Features

	Programming With KookaBlockly

	AustSTEM Learning Hub

	Installing KookaBlockly
	Downloading KookaSuite

	Installing KookaSuite on Microsoft Windows

	Installing KookaSuite on MacOS

	Installing KookaSuite on Raspberry Pi

	Script Folders

	KookaBlockly Updates

	Editing KookaBlockly Scripts Using KookaIDE

	Using the KookaBlockly Application
	Version

	Resize / Exit

	Workspace

	Blocks Palette

	Script Controls

	Inspection Buttons

	Connection

	Script Selection

	Scroll Bars, Centre, Zoom and Trash

	KookaBlockly Conventions
	Block Shapes

	Block Configuration

	Right-clicking

	Text Delimiters

	Deleting Blocks

Footnotes

Introduction to KookaBlockly

KookaBlockly: Visual Programming Editor for Kookaberry Microprocessor Boards

KookaBlockly is a powerful standalone visual editor designed for creating program scripts for Kookaberry and related microprocessor boards.
This editor operates on a drag-and-drop interface, making it beginner-friendly and highly intuitive.
It’s built upon the open-source Google Blockly library (Apache 2 license), created by Google to facilitate the development of beginner-friendly programming languages.

Fig. 1 shows a KookaBlockly script assembled from visual function blocks dragged onto the workspace
from the palette of blocks on the left of the display.
The blocks click together like pieces of a jigsaw puzzle to form a series of steps that the Kookaberry microcomputer will perform.

[image: _images/kblockly-welcome-script.png]

Fig. 1 This is the KookaBlockly display with an example KookaBlockly script.

The example shown above shows a loop that writes a welcome message on the Kookaberry display and flashes the Kookaberry’s LEDs.
It then sleeps for 2 seconds and then goes back to the beginning of the loop. The loop will run until the Kookaberry is reset or power is removed.

KookaBlockly was created by Damien George (George Robotics – MicroPython) in collaboration with Kookaberry Pty Ltd.
It also received support from the AustSTEM Foundation, the Warren Centre, and the Vonwiller Foundation.

Key Features

	Intuitive Visual Interface:
	Users can create syntactically correct scripts and programs effortlessly,
even without prior knowledge of any programming language.

KookaBlockly enables users to assemble visual blocks into structured MicroPython (Python 3.0) code.

	Compatibility:
	The generated code can be utilized on most microprocessor boards that use MicroPython,
but is particularly suited to those with Kookaberry firmware for STM and RP2040 microprocessors.

	Platform Compatibility:
	KookaBlockly runs as a standalone program on personal computers with Microsoft Windows 10 or 11, Apple MacOS, or Raspberry Pi Raspbian operating systems.

	Easy Access:
	The latest version of KookaBlockly can be conveniently downloaded from the Kookaberry GitHub repository
at https://github.com/kookaberry/kooka-releases/releases.

Follow the Installing KookaBlockly guide in the next section to install KookaBlockly.

Programming With KookaBlockly

Using KookaBlockly is straightforward and enjoyable.

Users can drag and drop visual code blocks into the workspace, where they can be seamlessly interlocked or snapped together using sockets.

These sockets represent fundamental code concepts, including program controls (activation, termination, loops, and decisions), actions, and result computations (variables, values, mathematical and logical expressions).

The intuitive visual process empowers users to apply programming concepts and principles when designing scripts or programs, eliminating the need to worry about the syntax and semantics of MicroPython.

With KookaBlockly, programming becomes an enjoyable and accessible endeavour.

AustSTEM Learning Hub

AustSTEM has assembled a collection of resources on its Learning Hub at https://learn.auststem.com.au.
These resources complement the material in this manual with examples, lesson plans, descriptions of equipment and of their application.

Footnotes

Installing KookaBlockly

KookaBlockly is part of the KookaSuite set of code development and editing tools for the Kookaberry microcomputer
and other microcomputer boards that can use the Kooka firmware.

The tools that are in KookaSuite are:

	KookaBlockly
	a powerful standalone visual editor designed for creating program scripts.

	KookaIDE
	a text editor for creating and editing MicroPython program scripts and directly interacting with the Kookaberry control console.

IDE is short for Integrated Development Environment.

	KookaTW
	A virtual Kookaberry user interface that replicates the physical user interface on a Kookaberry and provides
a user interface for compatible microprocessor boards that do not have a physical user interface.

TW originated as Teacher’s Window, but also stands for TWin, or in some cases Training Window.

Downloading KookaSuite

The latest version of KookaBlockly can be conveniently downloaded from the Kookaberry GitHub
repository at https://github.com/kookaberry/kooka-releases/releases.

Choose the latest version compatible with your personal computer. KookaSuite versions available are for:

	Microsoft Windows V10 and later

	Apple MacOS V10.15 and later

	Raspberry Pi OS (32 bit Debian v12 [bookworm])

Click on the hyperlink for the appropriate version of KookaSuite and download it to a folder (default is in the Downloads folder) on your personal computer.

Installing KookaSuite on Microsoft Windows

	Double-click on the downloaded KookaSuite-<version>-Win64.msi file to launch the Windows Installer.
The display in Fig. 2 will then appear.

[image: _images/win-install-1.png]

Fig. 2 Click on Next to proceed.

	KookaSuite does not (as yet) have an application trust certificate, so Windows Defender will alert you
with the dialogues in Fig. 3 and Fig. 4.

[image: _images/windows-protect1.png]

Fig. 3 Click on More info to proceed to the next dialogue.

[image: _images/windows-protect2.png]

Fig. 4 Click on Run Anyway to proceed.

	The installer will then show the Kookaberry Licence Agreement. The agreement contains a liability disclaimer,
then a series of open-source licences for the software that is embedded within KookaSuite.

To obtain a printed copy of the licence, press Print.

Please read the licence conditions and if you accept them, click on the acceptance checkbox to place a tick (as shown in Fig. 5) and then click on Next.

[image: _images/win-install-2.png]

Fig. 5 Click the checkbox to accept the licence, then click on Next to proceed.

	The dialogue in Fig. 6 will then appear showing where on your computer the KookaSuite programs will be installed.

Usually the default location of C:\Program Files\Kookaberry\KookaSuite is fine, but you or your system administrator may wish to put them elsewhere. If so, click on Change and select the prefered location using the file explorer dialogue which will open.

[image: _images/win-install-3.png]

Fig. 6 Installation location dialogue. Click on Next to proceed.

	The next dialogue, shown in Fig. 7, specifies the folder in which KookaSuite will store files.

The default location is C:\Users\Public\Kookaberry Scripts\ which all users share on a Windows PC.
If another location (for example) C:\Users\<your account>\Kookaberry Scripts\ which is unique and private to <your account>) is desired,
click on Change and select the preferred location using the file explorer dialogue which will open.

[image: _images/win-install-4.png]

Fig. 7 Scripts location dialogue. Click Next to proceed.

	A dialogue then appears, shown in Fig. 8, that provides the opportunity to select which elements if not all of KookaSuite are to be installed.
It is recommended that all elements be installed for a fully functional KookaSuite.

[image: _images/win-install-5.png]

Fig. 8 Press Install to proceed with the KookaSuite installation.

	A dialogue with a progress bar that tracks the installation progress will appear as in Fig. 9.

There may be a Windows alert asking for permission to proceed. Accept the installation by clicking Yes.

The progress bar will then continue and when it reaches completion the Completed dialogue will appear.

[image: _images/win-install-7.png]

Fig. 9 Click on Finish to exit the Windows Installer.

Installing KookaSuite on MacOS

	Double-click on the downloaded KookaSuite-<version>-macOS.dmg file to open it. You will see it contains the three KookaSuite apps, as in Fig. 10.

[image: _images/mac-install-1.png]

Fig. 10 The contents of the MacOS KookaSuite download package.

	Create a suitably named folder in the Macintosh Applications\ folder and drag the KookaSuite apps into it, as shown in Fig. 11.

KookaBlockly will then be available to launch (as will KookaIDE and KookTW) from the Applications icon in the Macintosh taskbar and by any other regular methods for starting Macintosh applications.

[image: _images/mac-install-2.png]

Fig. 11 KookaSuite apps copied to the Applications folder.

If a KookaSuite tool has not been run on the Macintosh before, a security warning notice may come up.
The procedure for running any KookaSuite tool for the first time is given by the Apple Support website here: https://support.apple.com/en-us/HT202491.
After that the Macintosh will trust the software and allow it to run.

Installing KookaSuite on Raspberry Pi

KookaSuite has been compiled to run on the 32 bit version of the Raspberry Pi OS (Operating System),
which is based on Debian Linux v12, known as “bookworm”. KookaSuite will not run on earlier versions of the Raspberry Pi OS,
nor on the 64 bit version (unless you install dual architecture libraries, which can be complicated).

If your Raspberry Pi OS is an earlier version, you will need to update it.
First back-up your Raspberry Pi on some removable media e.g. a USB memory stick.
The easiest way is to flash the current 32 bit version onto a new SD-card following the instructions here: https://www.raspberrypi.com/software/
This will set up a new Raspberry Pi OS without any of your files on it.
Retain the old Raspberry Pi SD card in case you need to retrieve some information from the older operating system.
Then restore your data backup data into the home folder of the new Raspberry Pi OS.

Then proceed to download the KookaSuite-<version>-RPi.zip file from the the Kookaberry GitHub
repository at https://github.com/kookaberry/kooka-releases/releases.

Unzip the downloaded file into the home folder.
This will create a folder containing the three executables KookaBlockly, KookaIDE and KookaTW as shown in Fig. 12.

[image: _images/rpi-installed.png]

Fig. 12 KookaSuite apps copied to a folder in the Raspberry Pi’s home folder.

Using the terminal program, install the needed Qt5 modules:

Listing 1 Installing QT5

sudo apt install libqt5webkit5
sudo apt install libqt5websockets5
sudo apt install libqt5serialport5

If desired, create Raspberry Pi menu items under Programming using the Preferences/Main Menu Editor
as shown in Fig. 13 and Fig. 14.

[image: _images/rpi-menu-editor.png]

Fig. 13 Configuring KookaSuite apps using the Raspberry Pi’s menu editor.

[image: _images/rpi-menu.png]

Fig. 14 The KookaSuite apps as they appear in the Raspberry Pi’s menu.

Script Folders

During installation or first running of KookaSuite, the Kookaberry Scripts\ folder will be created
in the location specified during the installation process or on MacOS and Raspbian in the user’s home folder or documents folder.

If the Kookaberry Scripts\ folder already existed it will not be altered. See Fig. 15.

[image: _images/win-install-folders.png]

Fig. 15 The Kookaberry Scripts folder in a fresh KookaSuite installation.

The Kookaberry Scripts\ folder contains two sub-folders:

	KookaBlockly\ where KookaBlockly stores the program scripts created by it.

	KookaIDE\ where KookaIDE stores MicroPython scripts.

It is permissible to create sub-folders within the KookaBlockly\ and KookaIDE\ folders for different projects.

The script selection drop-down boxes in KookaBlockly and KookaIDE will however only scan the first level of sub-folders for scripts.

KookaBlockly Updates

Occasionally when KookaBlockly updates are released, the forms and functions of some blocks may be changed.

Existing KookaBlockly scripts will retain the forms and functions of blocks as last edited.
Updates to the blocks are not automatically applied to pre-existing scripts.

If the newer block is desired, then the KookaBlockly script must be edited and the block explicitly replaced by the newer form from the block palette.

Once an older block is removed it can no longer be used as it will no longer be available from the palette of blocks.

Editing KookaBlockly Scripts Using KookaIDE

A KookaBlockly file, designated with the file type suffix .kby.py,
contains the MicroPython script that is automatically generated by the KookaBlockly editor
as visual blocks are assembled and configured.
At the end of the KookaBlockly file there is a very long comment line which contains the code, in XML (Extended Markup Language) format,
that describes all the blocks, their parameters and their inter-connections.

While it is possible to edit a KookaBlockly file using the KookaIDE editor and to then run it on the Kookaberry, any changes made
will not alter the XML block code.
As soon as the KookaBlockly file is again opened by the KookaBlockly editor, it will regenerate the MicroPython script based on the XML block code,
and it will disregard any changes made to the MicroPython script.

Attempting to edit the XML code directly will likely render the KookaBlockly file unusable by the KookaBlockly editor, so please do not edit the XML code.

Important

Only edit KookaBlockly files using the KookaBlockly editor!

Footnotes

Using the KookaBlockly Application

Launching KookaBlockly on a personal computer will result in the display shown in Fig. 16.

[image: _images/kookablockly-display.png]

Fig. 16 This is the KookaBlockly display with the controls labelled.

The application window has numerous controls, as are described below:

Version

The version of KookaBlockly is shown at the top-left of the KookaBlockly window.

Note

The latest version of KookaBlockly can be conveniently downloaded from the Kookaberry GitHub repository
at https://github.com/kookaberry/kooka-releases/releases.

See the section Installing KookaBlockly for instructions.

If a KookaBlockly script has been loaded, the path and name of the file from which the script was loaded is shown next to the KookaBlockly version.

Resize / Exit

These controls allow the KookaBlockly window to be minimises or maximised, and the KookBlockly application to be exited.

If the KookBlockly script has not been saved before attempting to exit KookaBlockly,
a prompt dialogue will appear providing an opportunity to save or not save the current script to a file, as shown in Fig. 17.

[image: _images/unsaved-exit-prompt.png]

Fig. 17 Prompt dialogue on attempted exit with unsaved script.

Resizing of the window can also be accomplished by clicking on the window edges and dragging to resize.

The appearance and location of these controls varies between Windows, MacOS and Raspbian and conforms to the conventions used by the user interface of those operating systems.

Workspace

In the centre of the window is the KookaBlockly workspace.

Blocks can be dragged into this space, repositioned, resized and deleted by using the mouse or track-pad or pointing device.

Blocks Palette

Down the left of the window is a vertically-oriented list of the KookaBlockly palette categories, shown in Fig. 18.

Click on any category to reveal the palette of blocks, click on and drag the desired block to the workspace,
position it and release to drop the block in place. The blocks palette will then automatically close.

To close the blocks palette without dragging a block into the workspace, either click on the palette icon used to open the palette,
or press the Esc key.

[image: _images/blocks-palette.png]

Fig. 18 The Blocks Palette showing the Block Categories

The block categories and blocks are fully described in the Part 2 - KookaBlockly Function Blocks Reference section.

Script Controls

At the top-left of the window, a set of buttons with which KookaBlockly scripts may be created, loaded, saved, run and stopped. See Fig. 19.

[image: _images/script-control-buttons.png]

Fig. 19 The KookaBlockly Script Control Buttons

The functions of each of the KookaBlockly Script Control buttons is:

	New
	Empties the workspace to start a new script.
If the current script contents have not been saved then a save prompt is given as shown in Fig. 20.

[image: _images/unsaved-new-prompt.png]

Fig. 20 Prompt dialogue on attempting to clear the workspace containing an unsaved script.

	Load
	The Load button allows the user to select a KookaBlockly program to be loaded into the Workspace,
appending it to the current script. This feature enables the assembling of scripts by combining separate script files.

Move the cursor to this button, press click on the mouse and the dialogue in Fig. 21 will be displayed:

[image: _images/kblockly-load-dialogue.png]

Fig. 21 KookaBlockly script load file selection dialogue.

The default directory for Kookaberry scripts within the current user’s account is /Kookaberry Scripts/KookaBlockly and the user can navigate away from this as desired.

KookaBlockly script files have a type designation of .kby.py.

Selecting a script and pressing the dialogue’s Open button, or alternatively double-clicking on a selected KookaBlockly script file
will place a copy of that script in the KookaBlockly Workspace from where it can be modified, saved and run on the Kookaberry.

Important

When assembling scripts from a number of files, the name of the last loaded file becomes the default for saving the script. If the script is intended to be saved into a new or differently-named file then use the Save As button to give a different name to the file.

	Save
	Saves the currently named script to the corresponding file.

If the script was loaded from a file, the path and name of the file from which the script was loaded is shown next to the KookaBlockly version and the script will be save to that file.

If the script has not been previously saved, the Save As procedure is automatically used.

	Save As
	Saves the current script to a new file within a selected folder.

Move the cursor to this button, press click on the mouse and the file dialogue in Fig. 22 will be displayed:

[image: _images/kblockly-save-dialogue.png]

Fig. 22 KookaBlockly script save file selection dialogue.

The default directory for Kookaberry scripts within the current user’s account is /Kookaberry Scripts/KookaBlockly
and the user can navigate away from this to another folder as desired.

KookaBlockly script files have a type designation of .kby.py.

Enter the new file’s name and press the dialogue’s Save button will save the current script to the file.
If the file already exists, another dialogue shown in Fig. 23 will open asking to confirm whether the file is to be replaced.
Press Yes to overwrite the file, or No to go back and change the intended file name.

[image: _images/kblockly-confirm-saveas.png]

Fig. 23 KookaBlockly existing file name dialogue.

	Print
	Prints the current view of the script in the workspace, which may not be the whole script.
Using the Zoom buttons and Scroll Bars, adjust the view of the script to suit the printout desired.

When the Print button is clicked, a Print dialogue (per the operating system convention) appears as in Fig. 24.

Choose the print options, which again are specific to the PC operating system and the installed printer,
and then press the Print button to finalise printing options and then printing to the chosen printer.

Print options may include paper size, paper orientation, multi-page layout, printer selection and printer setup.

[image: _images/kblockly-print-dialogue.png]

Fig. 24 KookaBlockly script Print dialogue.

	Run
	Transfers the current script to the tethered Kookaberry and runs the script on the Kookaberry.

	Stop
	Terminates the script currently running on the tethered Kookaberry.

	At Start Up
	Gives the option to automatically run a script automatically whenever the Kookaberry is turned on or reset.

The Kookaberry will look for a script file called main.py in the root folder of its file store whenever it starts up.
If the script is present, it will be run. Using the At Start Up button, a file called main.py is created containing a small script
that causes a designated script in the Kookaberry’s app folder to be run.

For this to work correctly, the script must first be stored on the Kookaberry’s file storage system, in the app folder.

[image: _images/kblockly-atstartup1.png]

Fig. 25 At Start Up dialogue.

Click on the At Start Up button and a dialogue window, shown in Fig. 25, will appear with a drop-down list
of the scripts stored on the Kookaberry as in Fig. 26.

[image: _images/kblockly-atstartup2.png]

Fig. 26 At Start Up drop-down list of available scripts.

The first entry will be <none> followed by a list of scripts in the app folder.

Select the desired script and click the OK button.

[image: _images/kblockly-atstartup-folder.png]

Fig. 27 At Start Up folder selection dialogue.

A folder dialogue window will then open, as in Fig. 27, to select where on the Kookaberry a script file called main.py
should be stored.
Usually this will be in the root folder of the Kookaberry’s file store. However on occasion you may want to store the main.py file elsewhere.
Select the folder and click on the OK button and the main.py file will be stored in the folder.

To stop the script from being automatically run, select <none> in the script selection dialogue and overwrite the previously stored main.py.
A main.py file will still exist but without any instructions to start a script.

Inspection Buttons

At the top-right of the window, the Inspection Buttons will open separate windows.

[image: _images/show-script-display-buttons.png]

Fig. 28 The Inspection Buttons: Show script and Show display

	Show display
	This button which will open a window, shown in Fig. 29, on which the attached Kookaberry is shown in virtual form.
This includes the Kookaberry’s display, LEDs, buttons A to D and reset, and a button to start the Kookaberry’s internal menu.

The display will mirror the physical display on the Kookaberry.

The LEDs will change colour to mirror illumination of the real LEDs on the Kookaberry.

The buttons can be clicked using a mouse or track-pad on the PC, and will respond in the same way as the physical buttons on the Kookaberry.

[image: _images/kblockly-show-display-window.png]

Fig. 29 Virtual Kookaberry window

Note

It is also possible to load Kookaberry firmware onto standard Pi Pico microcomputer boards.
These boards do not have the physical Kookaberry display, LEDs or buttons.

In this case the virtual Kookaberry window can be used to view and operate the Kookaberry’s user interface.

	the “Kookaberry Reset” button replicates the hardware Reset button the Kookaberry

	the “Kookaberry menu” button replaces the “hold down button B and press and release Reset” on a physical Kookaberry

	the three LEDs replicate the three hardware LEDs on the Kookaberry

	the four buttons A, B, C and D, replicate the physical buttons on the KookaBerry

	Show script
	This button opens a window, shown in Fig. 30,
in which the MicroPython script generated by the loaded KookaBlockly script is displayed.

The size of the window showing the script can be adjusted by clicking on and dragging the edges of the script window using the cursor.

The MicroPython is read-only and cannot be edited within this window.

There is a check-box which when ticked will cause the script window to stay visible in front of other windows on the computer screen.

This window presents a live view of the generated MicroPython script and it is possible to watch the MicroPython script being dynamically
altered as the KookaBlockly script is being edited.

[image: _images/kblockly-show-script-window.png]

Fig. 30 KookaBlockly-generated MicroPython script window

Connection

At the top-centre is the “Serial” drop-down box which shows which serial USB ports are available and which is connected to a tethered Kookaberry.
See Fig. 31.

[image: _images/serial-dropdown.png]

Fig. 31 The Serial drop-down showing the available and used USB serial connection ports

Plugging in a Kookaberry usually automatically assigns a USB serial port.

If the Kookaberry is not responding, select the Auto-connect option to reset the serial connection to the Kookaberry.

It is also possible to block a Kookaberry connection by selecting Disable from the dropdown-box.

Script Selection

[image: _images/scripts-dropdowns.png]

Fig. 32 The Script Selection dropdown boxes

	Scripts dropdown box
	Shown in Fig. 32, this drop-down box contains a list of folders in the Kookaberry Scripts/KookaBlockly folder.

	Choose a script
	This contains a list of KookaBlockly scripts within the folder selected in the left-hand box.

Together these dropdown-boxes allow the selection and loading of any pre-existing KookBlockly script in the KookaBlockly folder and sub-folders.

If an unsaved KookaBlockly script is in the workspace,
a prompt as shown in Fig. 33 will appear giving the opportunity to save the existing script to a file
before replacing it with the selected script.

[image: _images/unsaved-script-load.png]

Fig. 33 Prompt dialogue on script replacement when an unsaved script is in the workspace.

Scroll Bars, Centre, Zoom and Trash

At the bottom-right of the window is a set of control icons as shown in Fig. 34.

[image: _images/workspace-zoom-trash-scrollbars.png]

Fig. 34 Control icons at the bottom right of the KookaBlockly window

	Centre Script
	for centering the KookaBlockly script.
Clicking on the Centre icon will centre the script in the Workspace and zoom it to fit the KookaBlockly window.

	Zoom Script
	for changing the visual size of the KookaBlockly script by zooming in and out.

Click on the + icon to zoom in and visually enlarge the script.

Click on the - icon to zoom out and visually shrink the script.

	Trash
	for retrieving blocks that were deleted during the current editing session.

Click on the Trash icon to open it and show the blocks that have been deleted in the current editing session.

To retrieve a block from the Trash, click on the block and drag it back into the Workspace.

To close the Trash press the Esc key.

When KookaBlockly is closed the contents of the Trash are deleted.

	Scrollbars
	there are horizontal and vertical scrollbars for positioning the KookaBlockly workspace within the window.

Click on a scrollbar and drag it up/down or left/right as appropriate to reposition the Workspace in the KookaBlockly window.

Footnotes

KookaBlockly Conventions

KookaBlockly provides an extensive palette of blocks to assemble into scripts.
The blocks palette is on the left of the display organised into functionally related categories.

Clicking on a category, for example the Control category, reveals the blocks available within that category.
To use the block, click on it and drag it onto the KookaBlockly workspace and release, and/or drag it into position until it snaps onto an adjacent block.
Any block in the workspace can be clicked on and dragged into position.

The blocks palette will close automatically when a block is dragged into the workspace.
Otherwise, the palette can be closed by clicking on the same block palette symbol that was used to open the palette,
or by pressing the Esc key on the keyboard.

Block Shapes

KookaBlockly contains three basic block shapes:

	A C-shaped block directs program flow and contains a sequence of action blocks. The C-shaped block may be a loop, or may be a sequence of blocks that are run conditionally subject to one or more logical tests.

[image: Every Loop If-Do Flow Blocks]

	An action or “do” block which performs an operation. The block has an indent in the top border and a matching protrusion on the bottom border. These blocks click together like jigsaw pieces and may be placed in a vertical column and within a C-shaped block.

[image: Display Clear Action Block]

	A value block which has a jigsaw tab on the left-hand edge. These blocks evaluate an expression and assign an output value to the blocks to which they are connected. Some value blocks have a matching receptacle on the right-hand edge which accepts other value blocks.

[image: Number Value Block]

Block Configuration

Some blocks have configuration options denoted by a cog symbol. Clicking on the cog symbol presents options that may be used to configure the block.

[image: Block Configuration]

Right-clicking

Right-clicking on a block also presents a set of option as below. These include: duplicate the current block; add a comment; collapse the block into a compact presentation or expand a collapsed block; disable or enable a block; remove the block from the program; or display some Help text about the block (if the Help text has been provided).

[image: Block Right-Click Options]

	Duplicate
	Click on Duplicate to create a duplicate of the block and any connected sub-blocks in the workspace.

Sub-blocks for example are all the blocks nested within a control block, or any value blocks connected to an action block.

	Add Comment
	Click on Add Comment and a circle with a question mark will appear in the block.

Click on the question mark and an area pane is provided for a user to enter in a comment.

This comment will be included in the MicroPython script generated by KookaBlockly.

Comments are very useful for describing parts or portions of the script for later reference by subsequent users of the script.

	Collapse Block
	Click on Collapse Block to truncate the block.

This is useful when a large number of blocks are in the workspace and the user wants to make a block smaller so that it is easier to see other blocks.

The user can restore the collapsed block at any time.

	Disable Block
	Click on Disable Block to make the block turn white and it will not be included in the script.

This is similar to “commenting out” lines of scripts when writing MicroPython code.

	Delete Block
	Choose a block by clicking on it.

Right click on the block and then choose Delete Block to delete the block from the script or press the Delete key on the keyboard.

Blocks can also be deleted by clicking on a block, separating it from the graphical script and dragging it into the Trash.

Clicking on the Trash icon, which is at the bottom-right of the Workspace, opens the lid and displays the deleted items.

Any deleted item may be dragged back into the workspace to become part of the program.

Clicking on a blank area of the workspace closes the Trash.

Text Delimiters

Many blocks contain text fields. In KookaBlockly, text is enclosed by double-quotes ", and these are automatically applied.

However there are some exceptions, particularly in the Advanced block which permits any valid MicroPython statement to be entered.
Here it is important to use the double-quotes " and not single quotes ' to delimit text, as single-quotes are used in KookaBlockly’s XML block code
and will be misinterpreted rendering the saved KookaBlockly file unusable (without manually correcting the XML block code).

Deleting Blocks

Any block in the workspace, including any attached input blocks, can be removed from the script by:

	dragging the block to the Trash at the bottom-right of the workspace.
The Trash icon will show an open lid when the dragged block is correctly positioned.

	or by clicking on the block to highlight it (shows a yellow outline), then pressing the delete key (or backspace key on Windows).

Blocks removed can be retrieved from the Trash by clicking on the Trash icon. A grey box will appear containing all of the deleted blocks.
To retrieve a block, drag it back into the workspace. The Trash will then close automatically.

To close the Trash without dragging a block into the workspace, press on the Esc key.

Footnotes

Part 2 - KookaBlockly Function Blocks Reference

In this Part 2 of the KookaBlockly Reference Guide,
each of the groups of function blocks available on the KookaBlockly palette are described in the following sections.

Contents of Part 2

	Control
	On Start

	Scheduled Loop

	Every Loop

	Exit Program

	Sleep

	Time (s)

	Time (ms)

	Clock
	Internal Clock
	Get Clock – Simple Time

	Get Clock - Extended Time

	Set Clock from Character String

	External Clock
	External Clock’s Pins Connections

	Get External Clock - Simple Time

	Get External Clock – Extended Time

	Set Internal Clock from External Clock

	Set External Clock from Internal Clock

	Set External Clock from Character String

	Display
	Kookaberry Display

	Text coordinates

	Display Clear

	Display Show

	Display Set Font

	Display Print

	Display Print-and

	Display Pixel

	Display Line

	Display Rectangle

	Display Text

	Display Image

	Buttons
	When Button Was Pressed

	When Button Is Pressed

	Button was pressed

	Button is pressed

	Button to Exit Program

	LEDs
	Turn ON LED

	Turn OFF LED

	Toggle LED

	Set NeoPixel

	Pins
	Pin Turn ON

	Pin Turn OFF

	Pin Toggle

	Set Pin to Digital Value

	Get Pin Digital Value

	Get Pin Voltage

	Get Pin Voltage as Percentage of Maximum

	Set Pin to Voltage

	Set Pin to Percentage of Maximum

	Pin – Pulse Width Modulation (PWM)

	Sensors
	Internal Sensors
	Get Accelerometer (raw)

	Get Accelerometer (scaled)

	Get Compass

	External Sensors
	Sensors’ Pins Connections

	Get Temperature from DS18x20

	Get Temperature from NTC

	Get Temperature or Humidity from DHT11 or DHT22

	Get Temperature / Humidity / Pressure from BME280
	About The BME280 Sensor

	Get Acceleration / Compass Strength from LSM303
	About the LSM303 Sensor

	Get LUX from VEML7700
	About the VEML7700 Sensor

	Get Power / Voltage / Current from INA219
	About the INA219 Sensor

	Get Soil Moisture
	About Soil Moisture Sensors

	More Sensor Learning Resources

	Actuators
	Actuators’ Pins Connections

	Set Servo to Angle

	Set Servo to Angle Taking Seconds

	Set Servo to Speed

	Set Servo to Speed Taking Seconds

	More Actuator Learning Resources

	Radio
	Internal Radio
	When Radio Receive

	Radio Read

	Radio Send

	Set Radio channel

	Set Radio Parameter

	External Radio
	When HC-12 Receive

	HC-12 Read

	HC-12 Send

	HC-12 Send and

	HC-12 Set Channel

	Logging
	Clear File

	Log To File

	Boolean
	Comparison

	Boolean And / Or

	Not

	True / False

	Null

	Test If

	If–Else
	If-Do

	If-Do-Else-Do

	If-Do-Else If-Do-Else-Do

	If-Do Configuration

	Loops
	Loop Repeat

	Loop Repeat While / Until

	Count With Variable From-To-By
	Count With Variable Example

	For Each Item In List

	Break / Continue Loop

	Strings
	Text

	Format as Integer

	Format as Floating Point

	Convert to Integer

	Convert to Float

	Lists
	Create List
	Create List Example

	Create List With Item Repeated No. of Times

	Length Of List

	Is Empty

	In List Find First / Last Occurrence of Item
	In List Find Example

	In List Get / Remove Item
	In List Get / Remove Examples

	In List Set / Insert Item
	In List Set / Insert Example

	In List Get Sub-List
	Get Sub-List Example

	Make List / Text With Delimiter
	Make List / Text Examples

	Sort List
	Sort List Example

	Math
	Number
	Number Example

	Arithmetic
	Arithmetic Example

	Multiply and Add

	Scale Function
	Scale Example

	Math Function

	Trigonometric Function

	Special Constants

	Number Property Test

	Round Number

	List Operations
	List Operations Example

	Remainder

	Constrain

	Random Integer

	Random Fraction

	Atan2 of X

	Variables
	Create Variable

	Set Variable

	Change Variable

	Variable Value

	Functions
	Define Function
	Define Inputs

	Function Name

	Function Description

	Define Function with Return Value

	If Condition Return

	Advanced
	Python Value

	Python Action

	Advanced Example

Footnotes

Control

The Control blocks in Fig. 35 direct program flow or provide time-related functionality.

[image: _images/control-palette.png]

Fig. 35 The palette of KookaBlockly Control blocks

Each block is described in turn below.

On Start

The “on start” block is intended to contain other action blocks that will run first and only once when the KookaBlockly script starts.

[image: On Start Block]
Typically the blocks contained are for the initialisation of the display, variables, sensors, and actuators.

Scheduled Loop

This block is a loop that repeatedly runs the blocks nested inside at the time interval specified in the numeric box.

[image: Timed Loop Block]
The loop will continue forever at the defined period unless the program is externally stopped.

The time specification is a number in decimal seconds, for example: 1 is 1 second, and 0.001 is 1 millisecond.

Every Loop

This block runs the blocks nested inside in a repeated loop.

[image: Every Loop Block]
The loop will run forever unless externally stopped by exiting the script, or resetting the Kookaberry or removing power from the Kookaberry.

Another name for this block is the Repeat Forever loop.

Exit Program

This block directs the running program to exit.

[image: Exit Program Block]

Sleep

This block causes the program to wait / pause for the specified time before continuing to the next block.

[image: Timed Sleep Block]
The number in the box specifies the duration of sleep in decimal seconds.

Time (s)

This block returns a value in whole seconds since the Kookaberry’s epoch time (00:00:00 on 1st
January 2000).

[image: Time Seconds Value Block]
By subtracting successive values given by this block, the elapsed interval in
seconds between the samples may be calculated which is useful for timing functions.

Note

epoch time is the point from which time is measured. This point differs for different operating systems.
For MicroPython on micro-computers, the epoch time is 2000-01-01 00:00:00.

epoch time should not be confused with the default time set on the Kookaberry’s internal Real Time Clock (RTC), which is 2015-01-01 00:00:00.
Using KookaBlockly, however, the Kookaberry’s internal RTC will be synchronised with the time on the PC it is tethered to using its USB connection.

Time (ms)

This block returns a value in milliseconds since the Kookaberry’s epoch time (00:00:00 on 1st
January 2000).

[image: Time Miiliseconds Value Block]
By subtracting successive values given by this block, the elapsed interval in
milliseconds between the samples may be calculated which is useful for high-resolution timing functions.

Footnotes

Clock

Clicking on the Clock category in the KookaSuite palette reveals the available blocks, as in Fig. 36.
Click and drag any of the required blocks to the KookaBlockly workspace and connect with other blocks
to build a script that can use and/or set the time.

[image: _images/clock-palette.png]

Fig. 36 The palette of KookaBlockly Clock blocks.

The blocks in the Clock category provide the functions to read and set the electronic real-time-clocks (RTCs).

The Kookaberry has an internal RTC which defaults to a time of 00:00:00 on 1 January 2015 when the Kookaberry is turned on.

The Kookaberry does not retain the time without external power as it has no internal battery to keep the internal clock running.

When the Kookaberry is connected to KookaBlockly, its internal RTC is updated to the time on the hosting computer.

An external RTC, connected as an accessory to the Kookaberry, usually has a battery and therefore maintains the time that has been previously set on it.
This provides a convenient way for the Kookaberry to obtain the correct time when it is not tethered to KookaBlockly (or KookaIDE or KookaTW).
The external RTC is connected to the Kookaberry using two Pins specified as SCL and SDA on the relevant blocks.

Each of the Clock blocks is described in the following sections.

Internal Clock

Get Clock – Simple Time

Reads the Kookaberry’s internal Real Time Clock (RTC) and returns a date or time in the chosen format selected from the drop-down menu on the block.

[image: Get Clock Block]
The value returned is a character string.

Get Clock - Extended Time

Reads the Kookaberry’s internal Real Time Clock (RTC) and returns the date and time as a character string comprising two parts
per the selected formats and separated by a string of characters that can be specified by the user (the default separator is the minus character -).

[image: Get Clock Extended Block]
In Fig. 37 is a KookaBlockly example script demonstrating a loop which updates the Kookaberry’s display every second with the current time and date.

[image: _images/clock-get-extended-script.png]

Fig. 37 A KookaBlockly Script that shows the current time and date on the Kookaberry display.

[image: _images/clock-get-extended-display.png]

Fig. 38 The Kookaberry display resulting from the example KookaBlockly Script in Fig. 37.

Set Clock from Character String

This block sets the Kookaberry’s internal Real Time Clock (RTC) to the time specified by a character string in the format “YYYY/MM/YY HH:MM:SS”.

[image: Set Clock From String Block]
This is useful for updating the internal RTC with a fixed time or where the Kookaberry internal clock has not been
automatically synchronised using KookaBlockly.

External Clock

External Clock’s Pins Connections

The external clock is connected to the Kookaberry by two of the five connectors on the back, P1 through to P5,
with connector P3 having two possible connection points: P3A and P3B. (see the Pins category description).

The external clock block has two input Pins drop-down selection blocks by which the input Pin can be selected.

It is possible to replace the Pins dropdown selection block with a String block.
This is useful when using Pins other than those exposed on the rear of the Kookaberry,
or when other microprocessor boards that are compatible with Kookaberry firmware are being used.
In those cases type in the Pin’s identifier into the String block.

Get External Clock - Simple Time

Reads the Kookaberry’s external Real Time Clock (RTC) and returns a date or time in the chosen format selected from the drop-down menu on the block.

[image: Get External Clock Block]
The value returned is a character string.

The external RTC is connected to the Kookaberry’s connector ports as selected from the SCL and SDA dropdown lists.
The default setting of SCL as P3A and SDA as P3B is usually correct, meaning the external RTC is connected to the Kookaberry using the 4-pin P3 port.

Get External Clock – Extended Time

Reads the Kookaberry’s external Real Time Clock (RTC) and returns the date and time as a character string comprising two parts
per the selected formats and separated by a string of characters that can be specified by the user (the default separator is the minus character -).

[image: Get External Clock Extended Block]
The external RTC is connected to the Kookaberry’s connector ports as selected from the SCL and SDA dropdown lists.
The default setting of SCL as P3A and SDA as P3B is usually correct, meaning the external RTC is connected to the Kookaberry using the 4-pin P3 port.

Set Internal Clock from External Clock

Sets the Kookaberry’s internal Real Time Clock (RTC) by copying the current time from the external RTC.

[image: Set Internal Clock From External Clock Block]
The external RTC is connected to the Kookaberry’s connector ports as selected from the SCL and SDA dropdown lists.
The default setting of SCL as P3A and SDA as P3B is usually correct, meaning the external RTC is connected to the Kookaberry using the 4-pin P3 port.

Set External Clock from Internal Clock

Sets the Kookaberry’s external Real Time Clock (RTC) by copying the current time from the internal RTC.

[image: Set External Clock From Internal Clock Block]
This is useful for updating the external RTC with the correct time when the Kookaberry is tethered to KookaBlockly.

The external RTC is connected to the Kookaberry’s connector ports as selected from the SCL and SDA dropdown lists.
The default setting of SCL as P3A and SDA as P3B is usually correct, meaning the external RTC is connected to the Kookaberry using the 4-pin P3 port.

Set External Clock from Character String

Sets the Kookaberry’s external Real Time Clock (RTC) to the time specified by a character string in the format “YYYY/MM/YY HH:MM:SS”.

[image: Set External Clock From String Block]
This is useful for updating the external RTC with a fixed time or where the Kookaberry’s internal clock has not been
automatically synchronised using KookaBlockly.

The external RTC is connected to the Kookaberry’s connector ports as selected from the SCL and SDA dropdown lists.
The default setting of SCL as P3A and SDA as P3B is usually correct, meaning the external RTC is connected to the Kookaberry using the 4-pin P3 port.

Footnotes

Display

Display blocks in Fig. 39 control what appears on the Kookaberry’s display.

[image: _images/display-palette.png]

Fig. 39 The palette of KookaBlockly Display blocks

Each block is described in turn below.

Kookaberry Display

The Kookaberry’s display is a 128 pixel wide x 64 pixel high cyan OLED (Organic Light Emitting Diode) display.

[image: _images/display-coordinates.png]

Fig. 40 The Display coordinates

The x direction is the width of the display having a range specified as 0 to 127 pixels and the y direction
is the height of the display having a range specified as 0 to 63 pixels.

As shown in Fig. 40, the (x,y) location (0,0) is at the top left-hand corner of the display.
The bottom right of the display has a location reference (x,y) of (127,63).

The display is driven from an internal memory array known as a Framebuffer,
into which the software writes the pixel data prior to its contents being transferred to the physical Kookaberry display.
This reduces any display flicker.

The method of writing to a display is generally:

	Clear the Framebuffer

	Write text and/or graphics to the Framebuffer in one or more parts to build up the entirety of the Display’s contents, and then

	Show the display buffer on the display.

The following blocks provide the functionality to operate the Kookaberry’s Display.

Text coordinates

The coordinates at which text is positioned on the Display differs from the graphical elements (pixel, line, rectangle, and image).

	Graphical elements are positioned at their top-left corner.

	Text is positioned at its bottom-left corner.

To accurately position text, one can use trial-and-error, or make a calculation that depends on the text font size (the default being mono8x8).

	To position a pixel at the top-left of the Display (0,0) simply specify x=``0`` and y=``0`` in the Display Pixel block.

	To position text at the top-left of the Display, specify (0,7) being x=``0`` and y=``7`` (the mono8x8 font height) in the Display Print block.

Display Clear

This block clears the display’s frame buffer. The physical display will not be updated until a Display Show is used.

[image: Display Clear Block]

Display Show

This block transfers the display’s frame buffer to the Kookaberry’s physical display.

[image: Display Show Block]
KookaBlockly automatically inserts the equivalent Display Show code towards the end of the generated MicroPython script.
However it may be desirable to refresh the physical display earlier in the KookaBlockly script,
such as at the end of a loop that updates the display.
Use this Display Show block in such circumstances as otherwise the display will not update until the end of the script.

Display Set Font

This block sets the character font to that selected from the drop down box.

[image: Set Font Block]
The display fonts available for selection are from smallest to largest:

	mono5x5 - each text character is 5 pixels wide by 5 pixels tall

	mono6x7,- 6 pixels wide by 7 pixels tall

	mono6x8 - 6 pixels wide by 8 pixels tall

	mono8x8 - 8 pixels wide by 8 pixels tall (the default font)

	mono8x13 - 8 pixels wide by 13 pixels tall, and

	sans12.- 12 pixels wide by 12 pixels tall

The selected font will be applied from the point of selection.

A display using several fonts sizes may be constructed by using the Display Set Font block
as the display Framebuffer is constructed by the KookaBlockly script.

Display Print

This block prints the editable text in the input value block to the Kookaberry display at position x=``0`` on a new line.
The current line is set to the top of the screen immediately after the display is cleared.

[image: Display Print Block]
If the line is longer than the display’s width, the line is wrapped onto successive lines of the display.
The current display line is increased by each successive Display Print until the bottom of the display is reached.

Thereafter each successive Display Print will scroll the display upwards by one line and the current line is shown at the bottom of the display.

Display Print-and

This block displays the editable text or value in the attached input value block on the current line of the display,
followed by the output of any value block.

[image: Display Print And Block]
Fig. 41 shows an example to display the time:

[image: _images/display-print-and-example.png]

Fig. 41 Display Print-and example script

This example results in a display that looks like Fig. 42 and is updated every second.

[image: _images/display-print-and-tw.png]

Fig. 42 Display Print-and example display

By using “Display Clear” the displayed text stays at the top of the screen instead of scrolling down the display.

Display Pixel

This block displays a pixel at the x and y locations with the specified colour on the display. The
values of x, y and colour are the outputs of any value block.

[image: Display Pixel Block]
If the values of x or y are outside of the display dimensions then the pixel will not be visible.

The values for colour should be either 0 or 1, where 0 is pixel off (black) and 1 is pixel on (cyan).

Display Line

This block draws a line on the display starting from the location given by the values x1, y1 to the
location given by the values x2,y2.

[image: Display Line Block]
The value for colour should be either 0 or 1, where 0 is pixel off (black) and 1 is pixel on (cyan).

Display Rectangle

This block displays a rectangle starting at location given by the values x, y with a width and
height given by the results of the value blocks attached to those parameters.

[image: Display Rectangle Block]
The value for colour should be either 0 or 1, where 0 is pixel off (black) and 1 is pixel on (cyan).

The fill? box when ticked fills the rectangle with pixels of the given colour.

The reverse? box specifies the orientation of the rectangle with respect to the x and y coordinates:

	if reverse? is not ticked, x and y specify the location of the top-left of the rectangle

	if reverse? is ticked, x and y specify the location of the bottom-right of the rectangle

The example script in Fig. 43 displays two rectangles of equal origin and dimensions,
with one of them having the reverse? box ticked. The resulting display in Fig. 44 shows two rectangles,
in normal and reverse orientations about the same x and y origin.

[image: _images/display-rectangle-example-script.png]

Fig. 43 Example showing the effect of the reverse? box on the Display Rectangle block

[image: _images/display-rectangle-example-display.png]

Fig. 44 The resulting display showing the effect of the reverse? box on the Display Rectangle block

Display Text

This block enables the display of the attached output of the attached value block (ie “Hello”) at
the location specified by the value blocks at x and y on the display, with the colour being the
value block output of 0 or 1.

[image: Display Text Block]

Note

The (x, y) coordinate is where the bottom left corner of the display text is positioned.

Display Image

This block allows for the creation of an 8 x 8 pixel array positioned on the Kookaberry display at the coordinates of x and y.

[image: Display Image Block]
The transparent? box if ticked will not extinguish any pixels that were already on, thereby giving an
impression of transparency.

By manipulating the values of x and y using value blocks, the pixel array can be made to move
around the screen.

Larger pixel arrays can be created by using multiple Display Image blocks with adjacent coordinates (by incrementing x and y in multiples of 8).

Footnotes

Buttons

Button blocks are used to specify the actions to be taken when a specific button is pressed. See Fig. 45.

[image: _images/buttons-palette.png]

Fig. 45 The palette of KookaBlockly Buttons blocks

The Kookaberry has four buttons beneath the display labelled A, B, C and D.

These buttons are coloured A red, B green, C blue, and D yellow.

[image: _images/kberry-front-photo.png]

Fig. 46 Kookaberry - front view showing Display, LEDs and Buttons

Button functions are also available on the virtual Kookaberry which is shown when KookaBlockly’s Show display button is clicked.

[image: _images/kberry-virtual-blank.png]

Fig. 47 Virtual Kookaberry

Each block in the Buttons category is described in turn below.

When Button Was Pressed

This is a control loop that performs the actions contained within it whenever the selected
button was pressed.

[image: When Button Was Pressed Block]
The button options are A, B, C, or D.

was pressed means that the actions within the loop will be performed only once after the selected button press.

When Button Is Pressed

This is a control loop that performs the actions contained within it as long as the selected
button is pressed.

[image: When Button Is Pressed Block]
The button options are A, B, C, or D.

is pressed means that the actions will be performed repeatedly as long as the selected button is being pressed.

Button was pressed

This is a value block whose result is True (= 1) whenever the selected button was pressed.

[image: Button Was Pressed Block]
The button options are A, B, C, or D.

After this value block is used its output reverts to False (= 0) until the next time the button was pressed.

Button is pressed

This is a value block whose result is True (= 1) as long as the selected button is being pressed.

[image: Button Is Pressed Block]
The button options are A, B, C, or D.

Th output of this value block reverts to False (= 0) when the button is not being pressed.

Button to Exit Program

This is a combination of two blocks: the button was pressed control loop, as described above, and the exit program action.

[image: Exit When Button Was Pressed Block]
The result of using this combination is whenever the button selected was pressed the currently running program will finish.

Footnotes

LEDs

The LEDs category, shown in Fig. 48, supports the three LED’s that are beneath the display on the Kookaberry.

These LEDs are coloured red, orange and green.

In addition, support is provided for NeoPixel RGB LEDs.

[image: _images/leds-palette.png]

Fig. 48 The palette of KookaBlockly LED blocks

Each block is described in turn below.

Turn ON LED

This block turns the LED, selected from the drop-down box, ON.

[image: Turn LED On Block]

Turn OFF LED

This block turns the LED, selected from the drop-down box, OFF.

[image: Turn LED Off Block]

Toggle LED

This block toggles the LED selected in the drop-down box.

[image: Toggle LED Block]
Toggle means to change the state of the LED from OFF to ON, or from ON to OFF, depending on the LED’s state.

Set NeoPixel

This block supports NeoPixel arrays connected to one of the connections selected in the drop-
down box.

[image: Set NeoPixel Block]
Neopixels are multicolour LEDs with Red, Green and Blue LEDs in every individual Neopixel. The
apparent colour of a Neopixel is the result of mixing the Red Green and Blue colours, in the same
way that a television screen produces colours.

Neopixels come as single units or in chains of multiple Neopixels.

The following are the controls that can be set or manipulated on this block:

	Pin
	The Kookaberry has five connectors on the back, P1 through to P5, with connector P3 having
two possible connection points: P3A and P3B. (see the Pins category description).

It is possible to replace the Pins dropdown selection block with a String block.
This is useful when using Pins other than those exposed on the rear of the Kookaberry,
or when other microprocessor boards that are compatible with Kookaberry firmware are being used.
In those cases type in the Pin’s identifier into the String block.

	pixel
	This is an integer commencing at 0 which specifies which pixel in the array will be set.

Important

The Kookaberry can only supply a limited amount of current power to a NeoPixel array.
It is recommended to use no more than 8 NeoPixels, and also to limit the brightness of each to no more than 50 when using more than 4 NeoPixels.

If more NeoPixels and/or brighter illumination is required, then a special power adapter between the Kookaberry and the NeoPixel array is recommended.

	RGB values
	Each of the R (red), G (green) and B (blue) values can be set with integers in the range 0 to 100 inclusive.

By varying the ratio of RGB values set, a wide range of colours can be achieved, as shown in Fig. 49.

[image: _images/leds-rgb-venn-diagram.png]

Fig. 49 RGB Primary Colour Combinations

Learn more about using NeoPixels here: https://learn.auststem.com.au/peripheral/rgb-led/

Footnotes

Pins

The Pins category, shown in Fig. 50, provides the means to control what the Pins do.

[image: _images/pins-palette.png]

Fig. 50 The palette of KookaBlockly Pins blocks

Pins are electrical connectors on the Kookaberry.

The Kookaberry circuit board has five plugs on the rear numbered P1 to P5.

P3 has four electrical pins and the rest have 3 pins.

On each connector two of the pins are used for positive and negative power connections. The remaining pin(s) have
multiple uses as digital or analogue inputs or outputs.

In some of the Pins blocks it is possible to replace the drop-down selection block with a String block.
This is useful when using Pins other than those exposed on the rear of the Kookaberry,
or when other microprocessor boards that are compatible with Kookaberry firmware are being used.
In those cases type in the Pin’s identifier into the String block, as shown in Fig. 51.

[image: _images/pins-string-nomination.png]

Fig. 51 Using a String value block instead of a Pins drop-down selection.

There are break-out (expander) circuit boards for the Kookaberry and the Pi Pico that make more of the GPIO Pins available for
connection and therefore practical use within KookaBlockly scripts.

Pin Turn ON

The Pin Turn ON block causes the selected pin to behave as a digital output and to be turned on with an output voltage of +3.3 volts DC.

[image: Turn Pin On Block]

Pin Turn OFF

The Pin OFF block causes the selected pin to behave as a digital output and to be turned off with an output voltage of 0 volts DC.

[image: Turn Pin Off Block]

Pin Toggle

The Pin Toggle block causes the selected pin to behave as a digital output and to change state from OFF to ON,
or from ON to OFF, depending on its existing state.

[image: Toggle Pin Block]
OFF sets the Pin to 0 volts DC, and ON sets the Pin to +3.3 volts DC.

Set Pin to Digital Value

The Pin Set Pin Digital Value block causes the selected pin to be set to according to the integer value of the input block.

[image: Set Pin Block]
If the input value is 0, the output of the Pin will be set to OFF which is 0 volts DC.

If the input value is not 0, typically 1 or greater, then the output of the Pin will be set to 1 which is +3.3 volts DC.

Get Pin Digital Value

This value block designates the selected pin as a digital input and returns the digital value of the
input as either 0 if the input voltage is close to 0 volts DC, or 1 if the input voltage is closer to +3.3
volts DC.

[image: Get Pin Block]

Important

The allowable Pin input voltage range for the Kookaberry is 0 volts to +3.3 volts DC.
Applying voltages outside that range may irreparably damage the Kookaberry.

Get Pin Voltage

This value block designates the selected pin as an analogue input and returns a floating point value of the input in volts DC.

[image: Get Pin Voltage Block]

Important

The allowable Pin input voltage range for the Kookaberry is 0 volts to +3.3 volts DC.
Applying voltages outside that range may irreparably damage the Kookaberry.

Get Pin Voltage as Percentage of Maximum

This value block designates the selected pin as an analogue input
and returns an integer percentage value of the allowable Kookaberry input voltage range.

[image: Get Pin Percentage Block]
Applying 0 volts DC to the input Pin will resturn a value of 0.

Applying +3.3 volts DC to the input Pin will resturn a value of 100.

Important

The allowable Pin input voltage range for the Kookaberry is 0 volts to +3.3 volts DC.
Applying voltages outside that range may irreparably damage the Kookaberry.

Set Pin to Voltage

Where available on the Kookaberry the Set Pin to Voltage block causes the selected pin to behave
as an analogue output and to be set to the voltage specified by the input block.

[image: Set Pin Voltage Block]

Note

Set Pin to Voltage is not available on Kookaberry using the Raspberry Pi Pico RP2040 microprocessor.

Set Pin to Percentage of Maximum

Where available on the Kookaberry the Set Pin to Percentage of Maximum block causes the selected pin to behave
as an analogue output and to be set to the percentage of maximum voltage specified by the input block.

[image: Set Pin Percentage Block]
The output voltage will rise from 0 volts DC to +3.3 volts DC linearly with the input block rising from 0 to 100.

Note

Set Pin to Percentage of Maximum is not available on Kookaberry using the Raspberry Pi Pico RP2040 microprocessor.

Pin – Pulse Width Modulation (PWM)

Pulse Width Modulation (PWM) oscillates the selected Pin as a digital output between 0 (0 volts)
and 1 (+3.3 volts DC) at a given frequency and duty cycle as specified in the input blocks.

[image: Set Pin PWM Block]
The duty cycle is the proportion of each oscillation in which the output state is set to 1. A duty cycle of 50
means that the oscillation is 0 for 50% of the time and 1 for the remaining 50%.

The frequency is the number of times the output cycles per second. Frequency can be any positive floating point value

Both frequency and duty can be derived from other value blocks or specified directly.

PWM is used to apply speed control to DC motors by varying the duty cycle from 0% (motor is
stopped) to 100% (motor at full speed). Additional circuitry is required to deliver the electrical
power that a motor requires.

PWM can also be used to play tones through a loudspeaker by varying the frequency according
to the pitch required. A frequency of 440Hz corresponds to the musical note of middle A on a
piano, for example. Duty cycle is usually set to 50% but other interesting harmonics may be
produced by varying the duty cycle over a limited range around 50%. Additional circuitry is also
required to successfully drive a loudspeaker.

See also https://en.wikipedia.org/wiki/Pulse-width_modulation

Important

Please note that motors and loudspeakers should not be directly plugged into a Kookaberry
connector. These devices require special electronics to supply more power.

Plugging in motors or loud speakers without the necessary driving electronics may irreparably damage the Kookaberry.

Footnotes

Sensors

The Sensors category provides blocks that enable the use of these sensors, as shown in Fig. 52.

[image: _images/sensors-palette.png]

Fig. 52 The palette of KookaBlockly Sensor blocks

The Kookaberry contains two on-board sensors, being a 3-axis accelerometer and a 3-axis magnetometer.

A large variety of external sensors may also be connected to the Kookaberry via its Pin connectors.

KookaBlockly supports many external sensors as are listed under the External Sensors section.
These encompass measuring temperature, humidity, barometric pressure, soil moisture, light, electrical power, voltage and current.

Internal Sensors

Get Accelerometer (raw)

The Kookaberry contains an internal 3-axis accelerometer.

[image: Get Accelerometer Block]
The accelerometer block provides the acceleration value of the selected axis (one of the X, Y and Z axes in the
sensor’s frame of reference), or the magnitude of the vector sum of all the axes. The X, Y and Z axes are selected using the drop-down list on
the right of the block. The values are in metres per second squared.

The Kookaberry’s internal accelerometer is oriented so that the X axis is along the horizontal
dimension of the display, the Y axis is aligned with the vertical dimension of the display, and the
Z axis is perpendicular to the Kookaberry’s circuit board.

A typical value for acceleration is due to the earth’s gravity, being 9.81 m/sec^2. This will vary slightly with geographic
latitude and height as distances from the earth’s centre of mass vary.

Note

The vector sum of all acceleration axes is the square root of the sum of the squares of the three axes. That is sqrt(x^2 + y^2 + z^2).

See also See https://www.explainthatstuff.com/accelerometers.html

Get Accelerometer (scaled)

The scaled accelerometer compound block is a convenient combination applying a multiplier and an offset to the raw accelerometer reading.

[image: Get Accelerometer Scaled Block]
The scale and offset factors can be typed in directly or provided by plugging in other value blocks.

This block is useful to adjust the sensitivity of the accelerometer and to compensate for offsets such as the ever-present acceleration due to gravity.

Get Compass

The Kookaberry has an internal 3-axis magnetometer which can measure the magnetic field strength
it is subjected to in three axes (X, Y and Z), as well as the total magnetic field strength, and the compass heading.

[image: Get Compass Block]

	The readings for magnetic field strength are in Gauss.

	The reading for heading are in degrees in the range 0 to 359 with 0 being North

See also https://en.wikipedia.org/wiki/Magnetometer

External Sensors

Sensors’ Pins Connections

External sensors are connected to the Kookaberry by one of the five connectors on the back, P1 through to P5,
with connector P3 having two possible connection points: P3A and P3B. (see the Pins category description).

Each external sensor block has one or more input Pins drop-down selection blocks by which the input Pin can be selected.

It is possible to replace the Pins dropdown selection block with a String block.
This is useful when using Pins other than those exposed on the rear of the Kookaberry,
or when other microprocessor boards that are compatible with Kookaberry firmware are being used.
In those cases type in the Pin’s identifier into the String block.

Get Temperature from DS18x20

The DS18x20 Probe is a waterproof digital temperature sensor that can measure temperature from -55°C to + 125°C with an accuracy of 0.5 ° C.

This block enables reading of the probe and returns the temperature in degrees centigrade. The drop-down box on this
block enables selection of which Pin connector the sensor is attached to.

[image: Get DS18x20 Temperature Block]
The DS18x20 sensor is used for measuring temperature in air and in liquid.

The sensor is pre-calibrated and performs all of the temperature calculations within the sensor.

Learn how to use the sensor here: https://learn.auststem.com.au/peripheral/ds18b20/

Note

The manufacturer of the temperature sensing DS18x20 chip requires a 4700 ohm (often referred to as a 4K7) pull-up resistor
to make the chip work correctly. The Kookaberry’s and Pi Pico’s internal pull up resistor may work on some DS18x20 chips but not all of them.
Try adding a pull-up resistor between the digital input Pin and Vcc by means of a pull-up adapter module,
or use a different make of DS18x20 sensor if troublesome operation occurs.

Get Temperature from NTC

The NTC (Negative Temperature Coefficient) thermocouple sensor works through measuring its resistance which reduces as temperature rises.
The Kookaberry performs the necessary calculations to convert the sensor’s resistance to a temperature reading in degrees centigrade.

[image: Get NTC Temperature Block]
The options on the NTC value block are:

	The connector to which the sensor is attached

	The parameters A, B and C are the coefficients used in the Stein-Hart equation that is used to convert thermocouple resistance to temperature.
Explaining this in more depth is beyond the scope of this manual. It is recommended that the default values not be altered.

See also https://www.explainthatstuff.com/howthermocoupleswork.html for an explanation of thermocouples.

Get Temperature or Humidity from DHT11 or DHT22

The Kookaberry supports the DHT11 and DHT22 temperature and humidity sensors.
This block obtains the value of the selected parameter from the DHT sensor.

[image: Get DHT11/22 Block]
[image: Get DHT11/22 Configuration]
The drop-down boxes on the DHT value block permit the selection of:

	the sensor reading to be returned: temperature (in degrees Centigrade) or relative humidity (as a percentage)

	the sensor type being used: DHT11 or DHT22

	the connector to which the sensor is connected.

The DHT sensors are only suitable for measuring air temperature.

The difference between the two sensor types is that the slightly more expensive DHT22 sensor has a higher level of accuracy and precision.

	the DHT11 temperature range is from 0 to 50 degrees Celsius with +-2 degrees accuracy.

	the DHT11 humidity range is from 20 to 80% with 5% accuracy.

	the DHT22 temperature measuring range is from -40 to +125 degrees Celsius with +-0.5 degrees accuracy.

	the DHT22 humidity measuring range is from 0 to 100% with 2-5% accuracy.

Please be sure to select the type of DHT sensor that matches the connected sensor or else erroneous readings will result.

The manufacturers of the DHT11 and DHT22 sensors recommend an interval between successive readings of no less than 2 seconds.
Attempting shorter intervals will result in no reading and could also cause the Kookaberry script to terminate.

Learn more about using the DHT11 here: https://learn.auststem.com.au/peripheral/dht11/ and the DHT22 here: https://learn.auststem.com.au/peripheral/dht22/

Get Temperature / Humidity / Pressure from BME280

The Get Temperature from BME280 block is shown below with the three sets of options available from the drop-down boxes on the block.

[image: Get BME280 Block]
The first drop-down box provides the list of measurements available which are:

	Temperature in degrees Centigrade

	Air pressure in hectoPascals (aka milliBars)

	Relative air humidity in percent

	Altitude in metres relative to the first reading taken by the KookaBlockly script. That is, the first reading calibrates the altitude to zero metres.

[image: Get BME280 Address Configuration]
The second drop-down box provides two options for the BME280’s address on the I2C bus, that is 0x77 or 0x76.
The default of 0x77 is usually the best to use but it depends on what address the manufacturer of the BME280 sensor board has chosen.
It is possible to have two BME280 sensors, each with a different address, on the same Kookaberry interface.

[image: Get BME280 Pins Configuration]
The third and fourth drop-down boxes provide options as to which Pins are used for the SCL and SDA signals on the Kookaberry.

Usually the defaults of P3A for SCL and P3B for SDA will work, using the Kookaberry’s P3 4-wire connector.

Some BME280 boards on the market have the SCL and SDA wires swapped, which requires the selections on the block to be swapped.

Any other of the Kookaberry’s connectors (P1 to P5) can also be used.

A string block can also be used instead of the drop-down selector blocks and the name of the Pin typed into the block.

About The BME280 Sensor

The BME280 sensor measures air temperature, relative humidity, and barometric air pressure.

There is also a compatible BMP280 sensor that measures air temperature and barometric air pressure,
but does not measure relative humidity. Using the blocks below will return a reading of zero for humidity.

This sophisticated sensor is available mounted on Kookaberry-compatible circuit boards distributed by a variety of manufacturers.

The interface with the Kookaberry is the I2C serial communications bus. I2C stands for Inter-Integrated-Circuit Communications (IIC or I2C).
See https://en.wikipedia.org/wiki/I%C2%B2C for more detail.

There are four wires in the I2C interface, being:
* Vcc power at +3.3 volts DC
* Gnd ground (or negative) for signal and power at 0 volts
* SCL being the serial clock signal for communications timing
* SDA being the serial data signal which conveys the digital data being communicated

When using BME280 circuit boards it is important that these signals are connected to the correct Pins on the Kookaberry.

Get Acceleration / Compass Strength from LSM303

The Get Acceleration from LSM303 block is shown below with the three sets of options available from the drop-down boxes on the block.

[image: Get External Accelerometer Block]
The first drop-down box provides the list of measurements available which are:

	Acceleration total magnitude in metres / second squared

	X axis acceleration in metres / second squared

	Y axis acceleration in metres / second squared

	Z axis acceleration in metres / second squared

	Compass total magnetic field strength in Gauss

	Compass heading in degrees from North

	Magnetic field strength along the X axis in Gauss

	Magnetic field strength along the Y axis in Gauss

	Magnetic field strength along the Z axis in Gauss

[image: Get External Accelerometer Pins Configuration]
The second and third drop-down boxes provide options as to which Pins are used for the SCL and SDA signals on the Kookaberry.

Usually the defaults of P3A for SCL and P3B for SDA will work, using the Kookaberry’s P3 4-wire connector.

Some LSM303 boards on the market have the SCL and SDA wires swapped, which requires the selections on the block to be swapped.

Any other of the Kookaberry’s connectors (P1 to P5) can also be used.

A string block can also be used instead of the drop-down selector blocks and the name of the Pin typed into the block.

About the LSM303 Sensor

The LSM303 sensor contains a 3-axis accelerometer and a 3-axis magnetometer.
The Kookaberry contains a LSM303 sensor internally, and this block provides functionality to use an externally connected LSM303 sensor.

This sensor can provide acceleration values and magnetic field strength in all three axes,
total acceleration and total magnetic field strengths, as well as compass heading.

See https://www.explainthatstuff.com/accelerometers.html for a simple explanation of what an accelerometer is.

For an explanation of what a magnetometer is, see https://en.wikipedia.org/wiki/Magnetometer.

The interface with the Kookaberry is the I2C serial communications bus. I2C stands for Inter-Integrated-Circuit Communications (IIC or I2C).
See https://en.wikipedia.org/wiki/I%C2%B2C for more detail.

There are four wires in the I2C interface, being:
* Vcc power at +3.3 volts DC
* Gnd ground (or negative) for signal and power at 0 volts
* SCL being the serial clock signal for communications timing
* SDA being the serial data signal which conveys the digital data being communicated

When using LSM303 circuit boards it is important that these signals are connected to the correct Pins on the Kookaberry.

Get LUX from VEML7700

The Get Lux from VEML7700 block is shown below with the two sets of options available from the drop-down boxes on the block.

[image: Get Lux Block]
The two drop-down boxes provide options as to which Pins are used for the SCL and SDA signals on the Kookaberry.

Usually the defaults of P3A for SCL and P3B for SDA will work, using the Kookaberry’s P3 4-wire connector.

Some VEML7700 boards on the market have the SCL and SDA wires swapped, which requires the selections on the block to be swapped.

Any other of the Kookaberry’s connectors (P1 to P5) can also be used.

A string block can also be used instead of the drop-down selector blocks and the name of the Pin typed into the block.

About the VEML7700 Sensor

The VEML7700 is a high-accuracy ambient light sensor with an I2C serial interface to the Kookaberry.

The ambient light readings are measured in Lux. Lux is the unit of illuminance, or luminous flux per unit area, in the International System of Units (SI),
and is equal to one lumen per square metre. See https://en.wikipedia.org/wiki/Lux for more detail.

The interface with the Kookaberry is the I2C serial communications bus. I2C stands for Inter-Integrated-Circuit Communications (IIC or I2C).
See https://en.wikipedia.org/wiki/I%C2%B2C for more detail.

There are four wires in the I2C interface, being:
* Vcc power at +3.3 volts DC
* Gnd ground (or negative) for signal and power at 0 volts
* SCL being the serial clock signal for communications timing
* SDA being the serial data signal which conveys the digital data being communicated

When using a VEML7700 circuit board it is important that these signals are connected to the correct Pins on the Kookaberry.

Get Power / Voltage / Current from INA219

The Get Power / Voltage / Current from INA219 block is shown below with the four sets of options available from the drop-down boxes on the block.

[image: Get Wattmeter Block]
The first drop-down box provides the list of measurements available which are:

	Power in watts DC (direct current).

	Current in amperes (amps) DC.

	Load voltage in volts DC.

	Power supply voltage in volts DC.

Note

The range and resolution of the INA219 sensor readings are set by the value of an internal shunt resistor, the maximum amps,
and the interfacing software.

Important

The safe operating range of the INA219 is given by the device’s data sheet.
Nominally the maximum voltage is 26 volts, maximum current is 8 amps.

[image: Get Wattmeter Pins Configuration]
The second and third drop-down boxes provide options as to which Pins are used for the SCL and SDA signals on the Kookaberry.

Usually the defaults of P3A for SCL and P3B for SDA will work, using the Kookaberry’s P3 4-wire connector.

Some INA219 boards on the market may have the SCL and SDA wires swapped, which requires the selections on the block to be swapped.

Any other of the Kookaberry’s connectors (P1 to P5) can also be used.

A string block can also be used instead of the drop-down selector blocks and the name of the Pin typed into the block.

[image: Get Wattmeter Address Configuration]
The fourth option on the block is the I2C address of the board. Up to four INA219 sensors may be connected to a single I2C bus
with any of the addresses 64 (hex 0x40), 65 (hex 0x41), 68 (hex 0x44) or 69 (hex 0x45).
Each board must have a unique I2C address.
To change the address in the block select the desired address from the drop-down list.

[image: Get Wattmeter Shunt Resistor Configuration]
The fifth option is a drop-down list of shunt resistors fitted to the sensor.
The correct value can be obtained by consulting the data sheet for the sensor board that is being used.
This value must be set correctly or else erroneous readings will result.
There are three options for shunt resistor values: 0.01 ohms, 0.05 ohms, and 0.1 ohms.
Larger shunt resistance will improve the resolution of the current reading but will reduce the maximum current that can be measured.
Care must also be taken to not exceed the shunt resistor’s power rating which is typically 2 watts.
Power in the shunt resistor is dissipated as heat and is equal to i^2 x R, where i is current in amps, and R the resistance in ohms.

[image: Get Wattmeter Maximum Current Configuration]
The sixth option is a drop-down list of the maximum currents to be measured.
The values in he list change according to the shunt resistance selected.

To achieve the best resolution in current measurements, a the maximum current above and closest
in value to the maximum current expected through the load should be selected.
The block will try to optimise the INA219 sensor settings for a given shunt resistor and
to avoid selecting currents which are beyond the safe operating range of the sensor.

The available combinations of shunt resistor and max-amps are shown below.

[image: Get Wattmeter Shunt 001 Choices]
[image: Get Wattmeter Shunt 050 Choices]
[image: Get Wattmeter Shunt 100 Choices]

About the INA219 Sensor

The INA219 sensor measures direct current, voltage and power from the circuit to which it is connected. It is commonly called a wattmeter.

In a direct current circuit, electrical power delivered to an electrical load (measured in watts) is the arithmetic product of
the current flowing through the load (measured in amperes) and the voltage across the load’s terminals (measured in volts).

To measure the current, a low value resistor is placed in series with the load, and the voltage across the resistor’s terminal is measured.
By applying Ohm’s Law, the current can be derived (current I = voltage V / resistance R).

See also

	https://en.wikipedia.org/wiki/Voltmeter,

	https://en.wikipedia.org/wiki/Ammeter and

	https://en.wikipedia.org/wiki/Ohm%27s_law

The INA219 sensor is commonly mounted on a breakout board equipped with terminals to attach the load and a power supply,
and a shunt resistor used to measure current flowing through the load.

The interface with the Kookaberry is the I2C serial communications bus. I2C stands for Inter-Integrated-Circuit Communications (IIC or I2C).
See https://en.wikipedia.org/wiki/I%C2%B2C for more detail.

There are four wires in the I2C interface, being:
* Vcc power at +3.3 volts DC
* Gnd ground (or negative) for signal and power at 0 volts
* SCL being the serial clock signal for communications timing
* SDA being the serial data signal which conveys the digital data being communicated

When using a INA219 circuit board it is important that these signals are connected to the correct Pins on the Kookaberry.

Get Soil Moisture

The Get Soil Moisture block is shown below with three options available on the block.

[image: Get Soil Moisture Block]
Soil moisture is given as a percentage, nominally in the range 0 to 100.
Values outside that range can be returned depending on the calibration values set in the dry= and wet= fields on the block.

The first option is a drop-down block to select which Pin the sensor is connected to.
A String block can also be used instead of the drop-down selector block and the name of the Pin typed into the block.

To the right of the Pin selector drop-down list are two fields which can be manually edited.
These are the voltages given by the sensor when it is dry and when it is wet. The default values suit a capacitive sensor.

	For a resistive sensor, the dry value should be lower than the wet value. Dry= 0 volts and wet= 3.3 volts are suitable starting values.

	For a capacitive sensor, the dry value should be higher than the wet value. Dry= 3.3 volts and wet= 0 volts are suitable starting values.

These values can be tuned with experience and the use of a calibrated soil moisture meter to improve the accuracy of the readings.

About Soil Moisture Sensors

There are two types of soil moisture sensor available:

	Resistive soil moisture sensor which measures the conductivity of soil by applying an electrical voltage using two spikes.

	Capacitive soil moisture sensor, consisting of a single broad spike, which measures changes in the soil’s capacitance due to the presence of moisture.

While both kinds of sensor are effective, the capacitive soil moisture sensor is much more durable as it is not susceptible to corrosion which affects
resistive sensors in prolonged use.

Learn more about using the resistive soil moisture sensor here: https://learn.auststem.com.au/peripheral/analogue-soil-moisture-sensor/

More Sensor Learning Resources

More information on sensors that can be used with the Kookaberry is here: https://learn.auststem.com.au/peripherals/

Footnotes

Actuators

The Actuators category provides the blocks that enable the use of these servos. See Fig. 53.

[image: _images/actuators-palette.png]

Fig. 53 The palette of KookaBlockly Actuator blocks

The Actuators category comprises blocks to use Hobby Servos and Continuous Rotation Servo
Motors.

Hobby Servos and have a built in motor, a feedback
circuit and a motor driver. They can be set to a particular angle and have a constrained range of motion, typically 180 degrees.
These servos are used in robot arms, for example.

Continuous Rotation Servos, as the name implies, can rotate continuously like a motor.
The control signal sets the speed of rotation, typically in degrees per second.
Continuous rotation servos can be used for driving the driving wheels of vehicles.

The supported servo motors have a three pin connector comprising:

	Gnd - power supply ground

	Vcc - positive DC power supply, and

	A pulse servo signal that controls the servo motion.

A typical Hobby Servo operates with a power supply voltage of around 4.5 to 6 volts.

While it is possible to drive some small servos directly from the
Kookaberry, it is recommended that the servo be powered a separate power supply due to
the required servo power being higher than the Kookaberry can provide.
A directly connected servo will be weak and slow, and may result in the Kookaberry’s power supply shutting down on overload.

Actuators’ Pins Connections

Actuators are connected to the Kookaberry by one of the five connectors on the back, P1 through to P5,
with connector P3 having two possible connection points: P3A and P3B. (see the Pins category description).

Each actuator block has an input Pins drop-down selection blocks by which the input Pin can be selected.

It is possible to replace the Pins dropdown selection block with a String block.
This is useful when using Pins other than those exposed on the rear of the Kookaberry,
or when other microprocessor boards that are compatible with Kookaberry firmware are being used.
In those cases type in the Pin’s identifier into the String block.

Set Servo to Angle

This block is for a Hobby Servo, which is a servo is a motor that rotates over a specified angular range.

[image: Set Servo to Angle Block]
The servo block sets the angle to which a servo motor should move specified in degrees. The
angle can be calculated by other value blocks or be specified as a fixed value. The option for this
block is which connector the servo is attached.

The block has two parameters:

	A dropdown block to selected which Pin the servo’s control signal is connected to.
A string block can also be used instead of the drop-down selector blocks and the name of the Pin typed into the block.

	The angle, in degrees, to which the servo is to rotate. The angle can be between - (range of rotation) / 2 to + (range of rotation) / 2.
The rotation will occur almost instantly.

Important

Please note that all but the smallest 9g servos should not be directly plugged into a
Kookaberry connector. These devices require special electronics to supply them with more power.
Plugging in large servos without the necessary driving electronics may shut down and possibly irreparably damage the Kookaberry!

Set Servo to Angle Taking Seconds

This block is the same as the Set Servo to Angle block with the addition of a parameter to set the time, in seconds,
over which the angular motion should occur. This allows for a less abrupt and more graceful motion of the servo.

[image: Set Servo to Angle Taking Time Block]
The block has three parameters:

	A dropdown block to select which Pin the servo’s control signal is connected to.
A string block can also be used instead of the drop-down selector block and the name of the Pin typed into the block.

	The angle, in degrees, to which the servo is to rotate.

	The time, in seconds, over which the rotation will occur.

Set Servo to Speed

This block is for a Continuous Servo, which is a motor that rotates at a specified rotational speed.

[image: Set Servo to Speed Block]
The servo block sets the angular speed at which a servo motor should rotate specified in degrees per second. The
speed can be calculated by other value blocks or be specified as a fixed value. The option for this
block is which connector the servo is attached.

The block has two parameters:

	A dropdown block to select which Pin the servo’s control signal is connected to.
A string block can also be used instead of the drop-down selector block and the name of the Pin typed into the block.

	The speed at which the servo is to rotate in degrees / second. The target speed will occur almost instantly.

Important

Please note that all but the smallest 9g servos should not be directly plugged into a
Kookaberry connector. These devices require special electronics to supply them with more power.
Plugging in large servos without the necessary driving electronics may shut down and possibly irreparably damage the Kookaberry!

Set Servo to Speed Taking Seconds

This block is for a Continuous Servo, which is a motor that rotates at a specified rotational speed.

[image: Set Servo to Speed Taking Time Block]
This block is the same as the Set Servo to Speed block with the addition of a parameter to set the time, in seconds,
over which the change in angular speed should occur. This allows for a less abrupt and more graceful transition in the speed of the servo.

The block has three parameters:

	A dropdown block to select which Pin the servo’s control signal is connected to.
A string block can also be used instead of the drop-down selector block and the name of the Pin typed into the block.

	The speed, in degrees / second, at which the servo is to rotate.

	The time, in seconds, over which change to target speed will occur.

More Actuator Learning Resources

More information on using actuators with the Kookaberry can be found here: https://learn.auststem.com.au/peripheral/micro-servo/

Footnotes

Radio

Radio communications between Kookaberries is possible using the Radio blocks shown in Fig. 54.

[image: _images/radio-palette.png]

Fig. 54 The palette of KookaBlockly Radio blocks

Radio communications is useful for sending messages, sharing data, for remote monitoring, and for remote control.

The Kookaberry has an internal short-range digital packet radio, and can also connect to one or more external longer range radios.

Internal Radio

The Kookaberry is equipped with a built-in digital radio transceiver than is able to send and
receive small amounts of digital data.

The radio uses the same radio spectrum as WiFi signals and Bluetooth signals, and therefore has a similar range of 10 to 20 metres.
The internal radio cannot communicate using WiFi or Bluetooth directly.

All Kookaberries on the same radio channel can listen in to the communications on that channel.

Similarly, multiple Kookaberries transmitting on the same channel may interfere with each others’ communications.
Errors caused during radio communications are detected and messages with errors caused by interference will be discarded.

The internal radio is compatible with the BBC Micro:Bit’s radio, as it uses the same radio chip, radio frequencies, and digital signalling.

It is possible to exchange messages between the Kookaberry and the Micro:Bit provided the same radio channel is selected on both devices,
nominally on Channel 7.

By default, the length of the messages that can be sent is 30 bytes or
less when using KookaBlockly. Other Radio parameters such as the radio channel and speed of
transmission are also set to default values.

In the latest release of KookaBlockly, functionality has been added to alter the default parameters of the internal radio.
Care must be taken however that all the Kookaberries involved in communication have their radio parameters set in the same way.

The following blocks are available to control, receive and send messages using the internal Kookaberry radio.

When Radio Receive

This is a control block which contains actions that will be taken when a message is received by the Radio.
If no message is received then no actions within the scope of the block will be taken.

[image: When Radio Receive Block]

Radio Read

This value block will read the first Radio message in the queue of Radio messages received.
Once read the Radio message is deleted from the message queue.

[image: Radio Read Block]

Radio Send

This action block sends the data within the attached value block as a message via the Radio to be received by all other radios on the same channel.

[image: Radio Send Block]
The data can be the result of a value block, or be a fixed message as shown above.

The length of the message must be no longer than the message length limit or else a program error will result.

Typically an alphanumeric text character occupies only one byte but some special characters may occupy two or more bytes.

Set Radio channel

This block enables any of the available Radio channels to be selected.

[image: Set Radio Channel Block]
The Kookaberry’s internal radio is capable of transmitting and receiving on any of 84 channels.
The default Radio channel is 7.

An integer value between 0 and 83 can be selected by editing the number in the block.

Messages will be sent via this channel and only messages received via this channel will be put onto the incoming message queue.

It is therefore important that for two or more Kookaberries to intercommunicate, that they all be set to the same channel.

Each channel is 1MHz wide, starting at Channel 0 at 2400MHz and ending at Channel 83 at 2483MHz.

Set Radio Parameter

The Kookaberry’s internal radio can be configured in a variety of ways if the default settings are not suitable.

[image: Set Radio Parameter Block]
This block provides access to the numerous parameters that can be set.

Only one parameter can be set per instance of the block. Multiple instances of the block must be used to set multiple Radio parameters.

The block contains a drop-down list that enables selection of which parameter is to be set, and an input for a block
that specifies the value of the selected parameter:

	maximum payload (default=32) defines the maximum length, in bytes, of a message sent via the Radio. It can be between 1 and 251 bytes long.

	queue length (default=3) specifies the number of messages that can be stored on the incoming message queue. If there is no space left on the queue then additional incoming messages are dropped. Can be between 1 and 254.

	channel (default=7) an integer value between 0 and 83 inclusive that defines the channel (actually frequency) to which the Radio is tuned. Messages will be sent via this channel and only messages received via this channel will be put onto the incoming message queue. Each step is 1MHz wide, starting at 2400MHz.

	power (default=6) an integer value between 0 and 7 inclusive which indicates the strength of signal used when sending a message. The higher the value the stronger the signal, but the more power is consumed by the device. The numbering translates to positions in the following list of dBm (decibel milliwatt) values: -30, -20, -16, -12, -8, -4, 0, 4.

	data rate (default=1) indicates the speed at which data transfer (send and receive) takes place. It can be 0, 1 or 2, for 250kbit/sec, 1Mbit/sec, or 2Mbit/sec respectively

	address (default=0x75626974) an arbitrary name, expressed as a 32-bit address, that’s used to filter incoming packets at the hardware level, keeping only those that match the address you set. The default matches that used on the micro:bit.

	group (default=0) an 8-bit value (0-255) used in conjunction with address to filter incoming messages. This effectively makes the full address 40 bits long.

	timestamp units (default=1) an integer 1 (TIMESTAMP_MS milliseconds) or 2 (TIMESTAMP_US microseconds) that indicates the units used in the timestamp entry returned by the receive_full() function.

Note

It would be very unusual to alter any of the Radio parameters, other than the channel, when coding using KookaBlockly.

External Radio

The Kookaberry can be connected to up to two external radio transceivers to communicate with other Kookaberries
(or other computers) that use the same radio transceivers.

The preferred radio transceiver is the HC-12 transceiver which operates in the 433Mhz radio band.

This radio band is the same as is used for domestic applications such as garage door openers and home weather stations.
It offers the advantage of communicating over a longer range than the Kookaberry’s internal radio.

Depending on the antenna fitted and the intervening radio environment, a range of at least 100 metres can be expected,
with up to 1 kilometre possible in the right circumstances.

Successful communication requires that all transceivers are set to the same parameters, particularly the same radio channel.

Setting up the HC-12 to other than its default parameters is beyond the scope of KookaBlockly.
Please refer to the HC-12 data sheet at https://www.elecrow.com/download/HC-12.pdf.

Radios other than the HC-12 can be used provided they emulate a wired connection and do not require any control commands.

The interface to the Kookaberry is via its UART (Universal Asynchronous Receiver and Transmitter) serial interface at 9600 bits/second.

Two UART interfaces are available on the Kookaberry:

	This interface is accessed by using plug P3 on the back of the Kookaberry. This is Radio A.

	This interface requires an expansion board that connects via the Kookaberry’s edge connector. The plug on such a board is P6.
This Radio is designated Radio B.

When HC-12 Receive

This is a control block which contains actions that will be taken when a message is received by the selected external radio.
If no message is received then no actions within the scope of the block will be taken.

[image: When External Radio Receive Block]
The drop-down list on the block selects which of the external radios (A or B) is being used.

HC-12 Read

This value block will read the first Radio message in the queue of Radio messages received by the external radio.
Once read the Radio message is deleted from the message queue.

[image: External Radio Read Block]
The drop-down list on the block selects which of the external radios (A or B) is being used.

HC-12 Send

This action block sends the data within the attached value block as a message via the external radio to be received by all other radios on the same channel.

[image: External Radio Send Block]
The data can be the result of a value block, or be a fixed message as shown above.

The drop-down list on the block selects which of the external radios (A or B) is being used.

HC-12 Send and

This action block sends the data within the attached value blocks as a message via the external radio to be received by all other radios on the same channel.

[image: External Radio Send And Block]
The data sent is a concatenation of the two value blocks.

The first block can be a descriptor (eg. Temperature) and the second the value derived from a temperature sensor.

The drop-down list on the block selects which of the external radios (A or B) is being used.

HC-12 Set Channel

This block sets a virtual (named) channel for the external radio.

[image: Set External Radio Channel Block]
The external radio will send all messages with a prefix equal to the channel name.

The external radio will also only receive messages with the same channel name.

Note

This virtual channel does not affect the radio frequency that the external radio uses. It is only a prefix that groups messages into groups.

The drop-down list on the block selects which of the external radios (A or B) is being used.

Footnotes

Logging

The Logging blocks, shown in Fig. 55, provide a facility for writing data into files on the Kookaberry.

[image: _images/logging-palette.png]

Fig. 55 The palette of KookaBlockly Logging blocks

Note

At present KookaBlockly does not directly support the reading of files from the Kookaberry’s file system.
MicroPython scripting does however contain extensive functionality for reading, writing and manipulating the Kookaberry’s files.
In the Advanced Category there is an example of using Python blocks to read a text file.

The Kookaberry contains a 3 to 4 megabyte (depending on hardware model) non-volatile serial memory store which is used to store
files. These files can be written and read by the Kookaberry and also via a USB interface by any attached computer.

Logging files are text files which are in the comma-separated-values (CSV) format.
That is, each line contains alphanumeric text data which are separated by commas.
The first line of the files can be used to represent headings for the data item columns that are in the following lines.
An example of a CSV file is:

Time,Temperature,Humidity
12:04:00,25,50
12:09:00,26,49
12:14:00,27,48
etc

During experiments, data is collected over time from instruments comprising sensors.
These data are stored in a CSV file at time intervals as above.

When the experiment is finished, the data can be retrieved from the CSV file stored on the Kookaberry using a computer to perform analysis of the results.
CSV text data is most commonly used to draw graphs of the data values over time using a spreadsheet program.

Clear File

The file block creates a new empty text file with the specified name in the Kookaberry’s file system.
If a file with the same name already exists, then it will overwritten with an empty file.

[image: New CSV File Block]
The name of the file is specified in the to file parameter with log.csv the default name. Edit this field to change the file name.
This can be any legal filename, usually in the form name.typ where name is a text string and typ is a short,
usually three letter, file type description.

CSV is the recommended file type, but other common types are: txt for text files, and log for log text files.
File type conventions are determined by the computer operating system that will read these files.

Log To File

The Log To File block writes the text provided by the attached value block(s) as a new line appended to the named text file.
If the text file name does not already exist, a new empty text file with the specified name will be created.

The value blocks attached as inputs to this block will provide text values to be written to the line in the file, separated by commas.

[image: Log One Value to File Block]
[image: Log Two Values to File Block]
[image: Log Three Values to File Block]
The first input, by default, is a text representation of the current time read from the Kookaberry’s internal clock.
This input block can be replaced by any other value block that provides a text string.

There are three varieties of the Log To File block, accepting one two or three further inputs.
These inputs are also expected to be text string representations of the data to be recorded in the file record.

To create a heading line in the CSV file, use the appropriate Log To File block first within an On Start control block
and plug in text string value blocks with the names of each of the columns.

Note

KookaBlockly presently supports a maximum of four data items per file record inclusive of the time string input.

If logging the time is not needed, then the time string can be replaced with some other string input.

If more data items are required then it is possible to use an Advanced block with the required MicroPython script in it.

The Show Script button on the KookaBlockly editor will open a window with the MicroPython script derived from the current KookaBlockly script.

Hint: Use a Log To File block to model the first four data items, copy the equivalent MicroPython (it all has to be on one line),
paste it into the Advanced block and modify it to suit your application.

You will need to learn about MicroPython nonetheless to make it work correctly.

Footnotes

Boolean

Boolean blocks are value blocks used to test whether a specified condition is True (1) or False (0). See Fig. 56.

[image: _images/boolean-palette.png]

Fig. 56 The palette of KookaBlockly Boolean blocks

Comparison

This Comparison block compares the two value blocks that are given with the rule selected from the dropdown menu
and outputs a result of True or False.

[image: Boolean Comparison Block]
The options available in the drop-down selection box are:

	the inputs are equal (=)

	the inputs are not equal (≠)

	the first input is less than (<) the second input

	the first input is less than or equal to (≤) the second input

	the first inputs is greater than (>) the second input

	the first input is greater than or equal to (≥) the second input.

Equal to (=) and not equal to (≠) work for almost anything including numbers, lists (arrays) and character strings.

The other operands only work for numbers.

Boolean And / Or

The Boolean And / Or block performs the selected Boolean operation on its two inputs.

[image: Boolean And/Or Block]
Both inputs are required to be Boolean. It is not possible to plug numbers or text strings into the inputs.

	and will give back a True only if both of its inputs are True.

	or will give back True if either or both of its inputs are True.

Not

This block takes a True/False Boolean value block input and logically inverts it.

That is, True becomes False, and False become True.

[image: Boolean Not Block]

True / False

This value block gives a Boolean True or False value depending on which option is selected.
It is generally used to initialise variables that are subsequently used in a program.

[image: Boolean True/False Block]

Null

This value block is the value that variables have before they are given a value. It is a special
value that represents “none” or “nothing” but is distinct from 0. However it is treated as a zero
or False value if used.

[image: Boolean Null Block]

Test If

This block will output one of two input values depending on whether the test input is True or False.

[image: Boolean Test-If Block]
If the block in the Test input socket is True, the value in the if true input is transferred to the output.

If the block in the Test input socket is False, the value in the if false input is transferred to the output.

Footnotes

If–Else

The If-Else category comprises control blocks which direct the flow of a program depending on the results of the tests carried out by these blocks.
See Fig. 57.

[image: _images/if-palette.png]

Fig. 57 The palette of KookaBlockly If-Else blocks

If-Do

The if input socket takes a value block or compound block that represents a True or False value.

[image: If-Do Block]
If the value block in the conditional input is True, it runs the blocks nested inside.

If the block in the conditional input is False, it skips the nested blocks.

If-Do-Else-Do

This block is an extension of the If-Else-Do block.
It adds the else bracket into which the action blocks that are to be run if the tested input is False.

[image: If-Do-Else-Do Block]

If-Do-Else If-Do-Else-Do

This block is a further extension of the If-Do-Else-Do block.
A second conditional else if input is inserted and a bracket for actions to be run if the else if input is True.

[image: If-Do-Else-If-Do-Else-Do Block]

If-Do Configuration

The If-Do block is configurable.

[image: If-Do Block Configuration]
By clicking the gear icon on the block, extra elections can be added by dragging the else if or else blocks
into the white area to connect under the if block in the configuration box:

	else if sections can add more conditional sockets to check for further input Boolean values,
and a do bracket to contain action blocks to be run if the input is True.
Multiple else if sections can be configured.

	a single else section can be added to the end to contain the action blocks to be run if none of the previous conditions are True.

To remove any of the else if or else sections, drag them back into the grey area of the configuration box.

To close the configuration box, simply click the gear icon once more.

Footnotes

Loops

Loops are a category of control blocks, shown in Fig. 58, that direct the flow of a program.
They run the nested action blocks a number of times in accordance with the test taken at the beginning of the Loop.

[image: _images/loops-palette.png]

Fig. 58 The palette of KookaBlockly Loop blocks

Loop Repeat

This block runs the blocks nested inside of it for the specified number of times.

[image: Loop Block]
The number of iterations is provided by an input from a numeric value block which can contain a fixed number (from the Math blocks category),
a numeric computation (using blocks from the Math blocks category), or a variable.
See also the Variables category.

When the iterations of the Loop are complete the program moves on to the blocks below it.

Loop Repeat While / Until

In this block the two operations of While and Until are very similar to each other. Both require a Boolean
True / False value block in their input socket.

[image: Loop While/Until Block]
Repeat While will continue as long as the input value block is True.

Repeat Until will continue as long as the input value block is False.

Count With Variable From-To-By

This Loop will run its nested blocks several times depending upon the input numbers given.

[image: Loop Count With Variable Block]
The Loop will start by setting the chosen variable to its starting value using the first input.

Each time the Loop completes (known as an iteration), the variable’s value is changed by the number in the third input.

The Loop will continue to iterate until the value of the variable is equal to or greater than the number in the second input.

So if the Loop is configured to run from 0 to 3 by 1, it would run the nested blocks with the variable’s
value being 0, 1 and 2. Then the program would advance to the next block after the
Loop. During the Loop, the variable’s value indicates which repetition of the Loop is being run and can be used in calculations.

The variable drop-down list contains the names of the available variables. The default variables are i and j.

The options Rename variable and Delete variable are configuration functions to manage the
creation of new variables or deletion of existing variables. See also the Variables Category.

Count With Variable Example

In Fig. 59 is an example of the Loop counting between 1 and 16 by 3.

[image: _images/loops-count-with-example.png]

Fig. 59 Example script counts from 1 to 16

On each iteration of the Loop, the value of the variable i is printed on a new line on the display, as shown in Fig. 60.

[image: _images/loops-count-with-example-display.png]

Fig. 60 The display resulting from Fig. 59

For Each Item In List

This block has an input socket that takes a List. See the Lists Category.

[image: Loop For Each Item In ListBlock]
The Loop begins by setting the chosen variable to be the same as the first item from the List and then it runs the nested blocks.

The Loop then sets the chosen variable as the second item of the List and runs the nested blocks again.

The Loop repeats until it has run once for every item from the List.

This type of Loop is useful for printing a List of text items in subsequent lines on the Display,
or for processing a List of readings gathered from sensors.

Break / Continue Loop

This block must be placed inside a Loop. If the block is not placed in a Loop it will turn white with a warning symbol - see Fig. 62.

[image: _images/loops-breakout-example.png]

Fig. 61 The Loop Breakout / Continue used in a Loop

This block is used to either break out of the Loop, or to stop the current iteration of a Loop.

	break out immediately ends the Loop and jumps to the next block after the Loop.

	continue with next iteration stops the current iteration and jumps back to the top of the Loop and will run again if the Loop allows it.

The usual way to use this block is in an If-Do block where breaking a Loop is subject to a logical test as in Fig. 61.

[image: _images/loops-breakout-warning.png]

Fig. 62 The Warning appearance of the Loop Breakout / Continue block when not inside a Loop

Footnotes

Strings

Strings are an array of consecutive text characters such as “Hello”, or “this is a string”.

The Strings Category provides a set of value blocks for specifying and formatting strings, as shown in Fig. 63.

[image: _images/strings-palette.png]

Fig. 63 The palette of KookaBlockly String blocks

Text

This block allows a user to type in text that can be used as a string value by other blocks.

[image: String Value Block]
Type in the desired text between the double-quotes ", for example "Hello World".

Format as Integer

This block takes a numerical value block and formats its result as an integer with a width as defined in the block.

[image: String Integer Format Block]
For example, the integer 1000 would be formatted as the character string “1000”.

The results will in some cases vary:

	if the integer is wider than the specified width, the format will be enlarged to accommodate the number of characters required.
For example, if the width is specified as 2 but the number is 1000, the output will have width of 4 being "1000".

	if the specified width of the output is greater than the width required, then leading spaces will be added.
For example, if the width is specified as 2 but the number is 4, the output will be "4".

Format as Floating Point

This block takes a numerical value block and formats its result as a floating point number with
the specified number of decimal places and width (not including the decimal point).

[image: String Floating Point Format Block]
For example, the number 123.4567 formatted as 2 decimals with width 5, would result in the character string “123.46”. Note that
the last digit is rounded up if greater than or equal to 5 or down if less than 5.

The results will in some cases vary:

	if the number is wider than the specified width, the format will be enlarged to accommodate the number of characters required.
For example, if the width is specified as 3.2 but the number is 1000.12, the output will have width of 6.2 being "1000.12".

	if the specified width of the output is greater than the width required, then leading spaces and trailing zeroes will be added.
For example, if the width is specified as 4.2 but the number is 3.1, the output will be " 3.10".

Convert to Integer

This block converts an input string value and outputs a numeric integer value.

[image: String to Integer Block]
For example, an input of "1234" will output the integer number 1234.

Inputs strings that are not numeric integers, for example "ten" or "10.1", will raise a formatting error and the script will terminate.

Numeric inputs are permitted, for example a floating point input 10.1 will yield an integer output 10.
Integer inputs will be passed through as integer outputs.

This block is useful when parsing text from the Radio into integer data for use in computations.

Convert to Float

This block converts an input string value and outputs a numeric floating point value.

[image: String to Float Block]
For example, an input of "1234.56" will output the integer number 1234.56.

Inputs strings that are not numeric floats, for example "ten point one" will raise a formatting error and the script will terminate.

Numeric inputs are permitted, for example an integer input 10 will yield an integer output 10.0.
Floating point inputs will be passed through as floating point outputs.

This block is useful when parsing text from the Radio into floating point data for use in computations.

Footnotes

Lists

The Lists category, shown in Fig. 64, provides a large number of blocks to create and manipulate Lists.

[image: _images/lists-palette.png]

Fig. 64 The palette of KookaBlockly List blocks

A List is an array of zero or more items which can be Variables, numbers, characters, text, or other Lists.

To create a List, first create a Variable with the name of the List, and then set its value to that returned by the Create List block.

[image: Set Variable to List]
See the Variables Category to learn about creating and using Variables.

Create List

This value block gives back a new, empty List.

[image: Create Empty List Block]
The gear icon in the block allows the user custom tailor the block to add items.

[image: Create List With One Item]
[image: Create List With Two Items]

Create List Example

Here is an example of setting the value of a variable called "list" to a List of the names of Greek letters: [“alpha”, “beta”, "gamma"].

[image: Create List Example]

Create List With Item Repeated No. of Times

This action block creates a new List with the left-hand input item repeated several times as
specified by the number inserted into the right-hand input.

[image: Create List With Repeated Items Example]
In this example, a variable called ”list” is set to a List of the number “123” repeated 5
time, that is: [123, 123, 123, 123, 123].

Length Of List

This value block calculates the number of items in the input List.

In this example the number of items in "list" which contains [“alpha”, “beta”, “gamma”] is printed on the display as Length of list is 3.

[image: List Length Example]

Is Empty

This Boolean value block is True if the input List is empty (i.e. it has no items in it) or is False if the List has members.

[image: List Empty Boolean]

In List Find First / Last Occurrence of Item

This value block searches a List for a given item and is set to the index, a numeric integer,
in the List at which the item was found, if it was found.

[image: Find Occurrence in List]
A List index ranges from 0 to n-1, where n is the number of items in the List.
List indexing follows the rules of KookaBlockly’s underlying Python programming language.

If the item was not found the value block is set to -1 instead.

The first input socket accepts the variable which is a List, and the second input item specifies
the value that is being searched for.

The drop-down list gives the choice of finding the first or the last occurrence of the specified item in the List.

In List Find Example

In this example we search for the first occurrence of “gamma” in the List [“alpha”, “beta”, “gamma”]
and print the result on the display as Index is 2, "gamma" being the third item in the List.

[image: Find Occurrence in List Example]

In List Get / Remove Item

This value block operates on a List to retrieve, retrieve and remove, or just remove an item at a
particular position in the List. The value of the List item is returned as the result of the block.

[image: Get Item From List Block]
The images show the block and the drop-down list of the operation choices available in the block:

	get fetches the indexed item from the List without altering the List’s content

	get and remove fetches the indexed item from the List and then deletes it from the List. The length of the List reduces by one.

	remove deletes the indexed item from the List. This is an action block and does not return any value.

[image: Remove Item From List Block]
The second drop-down list has a number of choices as to which item in the List to get or set:

	# the index of the item in the List

	# from end the #th item from the end, where 0 would be the last item, 1 the second-last item etc.

	first the first item in the List. The index input will not be present.

	last the last item in the List. The index input will not be present.

	random uses a random item from the List. The index input will not be present.

[image: Get List Item Index Block]

In List Get / Remove Examples

In this example, the variable item is set to the result of getting the item with index 2 from the List containing [“alpha”, “beta”, “gamma”].
The result is printed on the display as Item is gamma.

[image: Get Item From List Example]
In this example, items from a List containing [“alpha”, “beta”, “gamma”], are removed and printed on the display until the List is empty.

[image: Remove Item From List Example]

In List Set / Insert Item

This action block either changes the value of an item at a specified location to the input value
or inserts a new item with the input value at the specified location in a chosen List.

[image: Set Item In List Block]
The first parameter is a drop-down list with the operation choices:

	set writes the input value to the indexed item in the List, overwriting its prior value

	insert at creates a new member of the List at the indexed position with the input value.
The members from the old index onwards are shifted into the next position and the length of the List increases by one.

The second drop-down list has a number of choices as to which item in the List to set or insert:

	# the index of the item in the List

	# from end the #th item from the end, where 0 would be the last item, 1 the second-last item etc.

	first the first item in the List. The index input will not be present.

	last the last item in the List. The index input will not be present.

	random uses a random item from the List. The index input will not be present.

[image: Set Item in List With Index Block]

In List Set / Insert Example

By way of example, we may wish to add "delta" to the end of the List initially containing the values [“alpha”, “beta”, “gamma”].

[image: Set Item In List Example]

In List Get Sub-List

This value block copies a portion of a chosen List and provides the Sub-List as its output.

[image: Get Sub-List Block]

As for the Create List block, a variable is needed to contain the output Sub-List.

The Sub-List portion starts from the first chosen index and ends at and includes the second chosen index.

Two drop-down boxes provide options for specifying the beginning index and the ending index:

	# the index of the item in the List

	# from end the #th item from the end, where 0 would be the last item, 1 the second-last item etc.

	first the first item in the List, only for the beginning index. The index input will not be present.

	last the last item in the List, only for the ending index. The index input will not be present.

The beginning index must be less than or equal to the ending index. If not, an error will be raised and the script will terminate.

Get Sub-List Example

In this example a smaller List is assigned to variable “sublist” comprising the the items from
index number 1 to the last item in the List containing [“alpha”, “beta”, “gamma”, "delta"].

[image: Get Sub-List Example]

The Sub-List will contain [“beta”, ”gamma”, delta”].

Make List / Text With Delimiter

This value block will, depending on the option chosen in the drop-down list:

	list from text parses a text string into items separated by the delimiter text and arranges the items into a List.

	text from list takes the items in a List and concatenates them into a text string separated by the delimiter text.

[image: Create/Get List With Delimited Text Block]

Make List / Text Examples

An example is to parse a text string into a List. The text string contains the first four Greek letters
separated by commas. The results is a List of the Greek letters as the variable “letters”.

[image: Create List From Text Example]

The complementary operation is to generate the original text from the List containing [“alpha”, “beta”, “gamma”, "delta"] and to print
it on the Kookaberry’s display.

[image: Create Text From List Example]

Sort List

This value block allows a List to be re-ordered by sorting in numeric or alphabetic order in an ascending or descending format.

[image: Sort List Block]

The first option is for the type of sorting:

	numeric if the List contains numbers, the List will be sorted in numeric order

	alphabetic the List will be sorted according to the ASCII character codes of the contents. See https://www.ascii-code.com

	alphabetic, ignore case the List is sorted into ASCII code order, but all letters are treated as lower-case.

[image: Sort List Configuration]

The second option is for the order of sorting:

	ascending the List is ordered from low to high values

	descending the List is ordered from high to low values

Sort List Example

This example prints the items in the List containing [“alpha”, “beta”, “gamma”, "delta"] on successive rows of the Kookaberry display in
alphabetical order.

[image: Sort List Example]

The result of the example can be seen on the Kookaberry’s display where the sorted order of the List is printed on successive lines:

[image: Sort List Example Result]

Footnotes

Math

Fundamental to any computer program is the ability to do mathematical computations.

The Math Category provides the repertoire of mathematical functions shown in Fig. 65.

[image: _images/math-palette.png]

Fig. 65 The palette of KookaBlockly Math blocks

Number

This value block represents a fixed number that is specified by editing the default number 123 in the block.

[image: Number Value Block]
The number can be any valid integer or floating point number:

	the number can be signed, that is, preceded by the character + (default and assumed if not present) or the character - for negative numbers

	there is no limit (other than computer memory) for how large the number can be

	an integer in the form 123456

	a floating point number in the form 123456.789

	scientific notation in the form 1.234567e5 can be used and will be displayed in integer or floating point form as appropriate 123456.7

Number Example

This example prints a number on the Kookaberry’s display:

[image: Number Value Example]

Arithmetic

This value block operates on two input values or value blocks that represent numbers with the chosen
arithmetic operator.

[image: Arithmetic Block]
The operations that can be chosen from the drop-down list are:

	addition (+)

	subtraction (-)

	multiplication (x)

	division (÷)

	and raised to the power of (^)

Arithmetic Example

This example prints the result of 2 raised to the power of 3 (ie. 2 cubed which is 8) on the Kookaberry’s display:

[image: Arithmetic Example]

Multiply and Add

This value block multiplies the first numerical value block input by the second numerical value block input
and then adds the third numerical value input to the product of the first two inputs.

[image: Arithmetic Combination Block]
This block is a convenient way to achieve the same result as using two Arithmetic blocks as in the example below.
Both blocks will print the same result (10).

[image: Arithmetic Combination Example]

Scale Function

The Scale value block will perform the necessary computations to convert the number on the first input
from a scale defined by the second input, to another scale defined by the third input.

[image: Scale Block]

Scale Example

By way of example, this script using the Scale block will convert a Celsius water temperature sensor reading
(range freezing point 0 to boiling point 100) into the equivalent degrees Fahrenheit
(range freezing point 32 F to boiling point 212 F) and print it on the Kookaberry’s display.

[image: Scale Example]

Math Function

This value block performs the chosen mathematical function on the numerical value input.

[image: Maths Function Block]
The options that are available are:

	square root - gives the number that when multiplied by itself is equal to the input - see https://en.wikipedia.org/wiki/Square_root

	absolute - the unsigned magnitude of the input value - see https://en.wikipedia.org/wiki/Absolute_value

	- - changes the input number’s sign from positive to negative or negative to positive - the same as multiplying by -1

	ln - natural (base e) logarithm of the input number - see https://en.wikipedia.org/wiki/Natural_logarithm

	log10 - base 10 logarithm of the input number - see https://en.wikipedia.org/wiki/Logarithm

	e^ - the constant e raised to the power of the input number - see https://en.wikipedia.org/wiki/Exponential_function

	10^ - 10 raised to the power of the input number - see https://en.wikipedia.org/wiki/Exponentiation

Trigonometric Function

This value block performs the basic selected trigonometric functions. on the input numerical angles.

[image: Trig Function Block]
The functions available for selection in the drop-down list are:

	sin - sine of the input angle - see https://en.wikipedia.org/wiki/Sine_and_cosine

	cos - cosine of the input angle - see https://en.wikipedia.org/wiki/Sine_and_cosine

	tan - tangent of the input angle - see https://en.wikipedia.org/wiki/Trigonometric_functions

	asin - arc-sine of the input value - the inverse of sine.

	acos - arc-cosine of the input value - the inverse of cosine.

	arc-tangent (atan) of the input value - the inverse of tangent.

The functions sin, cos and tan expect the input to be in degrees.
The outputs for these functions are floating point numbers between -1 and +1 inclusive.

The inverse functions asin, acos and atan expect the input to be floating point numbers between -1 and +1.
The outputs will be in degrees ranging from -180 to +180 inclusive.

See also https://en.wikipedia.org/wiki/Trigonometric_functions

Special Constants

This value block provides several special constants that are important and often used numbers in mathematics.

[image: Math Constants Value Block]
To choose a constant use the drop-down list and select from

	π - pi used in dealing with circles - see https://en.wikipedia.org/wiki/Pi

	e - Euler’s number used in exponential function - see https://en.wikipedia.org/wiki/E_(mathematical_constant)

	ϕ - the Golden Ratio phi - see https://en.wikipedia.org/wiki/Golden_ratio

	sqrt(2) - the square root of 2 - see https://en.wikipedia.org/wiki/Square_root_of_2

	sqrt(½) - the square root of ½ - see https://en.wikipedia.org/wiki/Square_root_of_2#Multiplicative_inverse

	∞ - infinity - see https://en.wikipedia.org/wiki/Infinity

For a list of most of the mathematical special constants see https://en.wikipedia.org/wiki/List_of_mathematical_constants

Number Property Test

This value block gives a Boolean value of True or False depending on whether the numerical input value
has the chosen property or not.

[image: Math Property Boolean Block]
The property to test is selected from the drop-down list which includes:

	even - whether the input is divisible by 2 - see https://en.wikipedia.org/wiki/Parity_(mathematics)

	odd - whether the input is not divisible by 2 - see https://en.wikipedia.org/wiki/Parity_(mathematics)

	prime - whether the input is divisible only by 1 and itself - see https://en.wikipedia.org/wiki/Prime_number

	whole - whether the input when divided by 1 leaves no remainder - see https://en.wikipedia.org/wiki/Whole_number

	positive - whether the input is greater than 0 - see https://en.wikipedia.org/wiki/Sign_(mathematics)

	negative - whether the input is less than 0 - see https://en.wikipedia.org/wiki/Sign_(mathematics)

	divisible by - whether the input when divided by the number in the second input leaves no remainder.
If divisible by is selected it will add a second input socket for the number to test against. - See https://en.wikipedia.org/wiki/Remainder

[image: Is Divisible Boolean Block]

Round Number

This value block rounds the numerical input value to a whole number using the chosen method.

[image: Number Rounding Block]
The method is chosen from the block’s drop-down list:

	round - rounds the number in the standard manner, if the fraction is greater than or equal to 0.5 it rounds up to the next more positive whole number,
and if the fraction is below 0.5 the block rounds down towards the negative direction.

	round up - if there is a fractional component the block always rounds up to the next more positive whole number.

	round down - removes any fractional component.

Input numbers are floating point and output numbers are integers.

	round up means in the positive direction.

	round down means in the negative direction.

List Operations

This block computes a mathematical function based on the content of a List which is connected to the input to the block.

[image: List Function Block]
The function to be used is selected from the drop-down list:

	sum - computes the arithmetic sum of the members of the List - see https://en.wikipedia.org/wiki/Summation

	minimum - returns the number with the minimum value from the List - see https://en.wikipedia.org/wiki/Maximum_and_minimum

	maximum - returns the number with the maximum value from the List - see https://en.wikipedia.org/wiki/Maximum_and_minimum

	average - returns the arithmetic mean of the items in the List - see https://en.wikipedia.org/wiki/Arithmetic_mean

	median - returns the arithmetic median of the items in the List - see https://en.wikipedia.org/wiki/Median

	modes - returns a List of the most numerous items in the List (example below) - see https://en.wikipedia.org/wiki/Mode_(statistics)

	standard deviation - computes the statistical standard deviation of the items in the List - see https://en.wikipedia.org/wiki/Standard_deviation

	random item - returns an item from the List that has been selected at random - see also https://en.wikipedia.org/wiki/Random_variable

Note

All functions except modes and random require that the input List contain only numerical or Boolean items.
Boolean items are evaluated as False = 0 and True = 1.
The modes and random functions accept Lists with members of any type, i.e. numeric integer and floating point, boolean, and character strings.

List Operations Example

This is an example of the use of modes. The input List contains [-123, 123, 123, -123].
The block returns a List of the most numerous items in the List, being [-123, 123].
If we changed the input List to [-123, -123, 123, -123], the block would return [-123], a List of one item being the most numerous.

[image: List Function Example]

Remainder

This block returns the fractional portion of the number that results when the number at the first input is divided by the number at the second input.

[image: Remainder Block]
For example, when 3 is divided by 2 the result is 1.5. The remainder is the fractional portion which is 0.5.

See also https://en.wikipedia.org/wiki/Remainder

Constrain

This block constrains the number at the first input to be between the minimum number defined as the second input
and the maximum number defined as the third input.

[image: Constrain Block]
There are three possible outputs from this block:

	if the input number is less than the minimum number, the output will be set to the minimum number.

	if the input is between the minimum and maximum inclusive, the number is passed through as-is.

	if the input number is greater than the maximum number, the output will be set to the maximum number.

Random Integer

This block generates an integer number that is constrained to be from a minimum integer defined by the first input,
and a maximum integer defined by the second input.

[image: Random Integer Block]
For example, to simulate the roll of a six-sided die, set the minimum to 1 and the maximum to 6.

See also https://en.wikipedia.org/wiki/Random_variable

Random Fraction

This value block creates a random floating point number from 0 up to but not including 1.

[image: Random Fraction Block]
See also https://en.wikipedia.org/wiki/Random_variable

Atan2 of X

This value block returns the arc tangent of two numerical values at inputs x and y .

[image: Atan2 Block]
This function is similar to calculating the arc tangent of y/x, except that the signs of both arguments are used to determine
the quadrant of the result. The result is an angle expressed in degrees in the range -180 to +180.

See also https://en.wikipedia.org/wiki/Atan2

Footnotes

Variables

Variables are a way of creating and manipulating a named value, in the same way that algebra uses names to refer to a value.
A Variable is useful as a named container to store a value for later use in one or more places in a KookaBlockly script.

Examples of typical Variable names are X, Y and Z when referring to cartesian coordinates; H, W and D as dimensions of an object;
and i or j as an index into a List. Variable names can of course be longer, for example height, or temperature

When KookaBlockly is first started, or when a new script is started, the Variables palette looks like this Fig. 66.

[image: _images/variables-palette.png]

Fig. 66 The initial Variables palette

Create Variable

Clicking on “Create variable” brings up a dialogue box, shown in Fig. 67, where the user can define the Variable’s name.
Type in a name and then click on OK. The figure shows an example name "my_variable".

[image: _images/variables-create-dialog.png]

Fig. 67 Creating a Variable named my_variable

Once a new Variable has been created, the new Variable will be available in the Variables palette.

[image: Define Variable in Palette]
It is possible to right-click while hovering over the Variable block in the palette to reveal a number of actions
which can be selected by then clicking on them:

[image: Variable Block Right-Click Options]

	Delete the variable - removes the Variable, and its associated blocks if it was the only Variable.

	Rename the variable - brings up a dialogue box, as for creating a Variable, in which the new name can be typed.
The new name must contain at least one visible character and not be the same as any other Variable.

	Help - this option does not yet work. It is intended eventually to display Help text.

Set Variable

Using this block, a value can be assigned to a Variable by attaching a value block to its input.
The value can be a number, a boolean, or a character string.

[image: Set Variable Block]
The Variable to be assigned the value can be selected from the drop-down-list.

The drop-down list also has some other choices:

[image: Set Variable Options]

	Rename variable - brings up a dialogue box in which the new name can be typed.
The new name must comprise at least one visible character and must not be a duplicate name.

	Delete the variable - removes the Variable and its associated blocks from the script.

Change Variable

This action block allows the user to change the selected Variable by a number specified by the input numerical value.

[image: Change Variable By Block]
This block will only work for numerical variables and will only accept numerical values.

Character strings and boolean values will not be accepted.

The example in Fig. 68 illustrates how this block may be used as a counter.

[image: _images/variables-change-example.png]

Fig. 68 Example script counts button presses

Three variables are set up: count_b, count_c and count_d to count the number of times buttons B, C and D are pressed.

The running totals are printed on the Kookaberry’s display, as shown in Fig. 69.

[image: _images/variables-change-example-display.png]

Fig. 69 The Kookaberry display resulting from Fig. 68

Variable Value

This value block allows a user to attach a variable’s value to the input of another block.

[image: Variable Value Block]
The example in Fig. 70 reads a temperature from a sensor once per 5 seconds, storing it in a Variable named "temperature", then using the stored value to perform a conversion calculation
and display the original and converted values on the Kookaberry display:

[image: _images/variables-example.png]

Fig. 70 Example script reads converts temperature readings to Fahrenheit

Footnotes

Functions

Functions are blocks that contain a sequence of other blocks.

Once defined, functions are available on the Functions palette for use in the KookaBlockly script in which they are defined.
See Fig. 71.

[image: _images/functions-palette.png]

Fig. 71 The initial Functions palette

Function blocks can be used repeatedly in a script without needing to repeat all the blocks they contain.
This simplifies scripts and saves valuable computer memory space.

Important

The function definition must remain in the KookaBlockly workspace for it to remain available in the Functions palette.
Deleting the function definition will remove the function block from the palette and all instances of it from the script.

Define Function

This block allows a user to define a sequence of blocks that will be run together when
the function’s block is used.

[image: Define Function Block]
To define a function, drag this block into the KookaBlockly workspace.

The block has a gear wheel which when clicked causes the definition box to appear:

Once the definition of the function block is complete, click on the cog symbol once again to close the definition box.
Remember to leave the function definition block in the KookaBlockly workspace!

[image: Defined Functions in Palette]
The function block will then be available in the palette for use elsewhere in the script:

Define Inputs

A function may, or may not, have inputs that will be used by the script inside the function.

[image: Define Function Input x]
[image: Define Function Input y]
To define the inputs, drag the input block on the left of the box into the bracket on the right.

To remove an input, drag the input block out of the bracket back to the grey box on the left.

Rename the inputs as desired by editing their names (click on the name and type the new name).
It is best to give the inputs names that are meaningful so the KookaBlockly script can be more easily understood by humans.

All the inputs will become Variables, do take care not to duplicate their names!

Function Name

Functions must have unique names within the context of the KookaBlockly script they are in.

[image: Define Function Name]
To define the function name, click on its name and edit the text.

Function Description

Functions can optionally be described.
A description may say what the function does, what its inputs are, what computations it performs, and what its output is.

[image: Define Function Description]
Click on the question mark, ?, and a description box will appear. Type the description in the box.

To close the description box, click on the question mark.

To view the description, click on the question mark and click again to close the description.

Define Function with Return Value

This block works in a similar manner to the Define Function block except that this block
returns a value.

The value returned is the output of the value block socketed at the bottom of the Define Function with Return Value block.

Here is an example where a function is defined to calculate the circumference of a circle given a radius:

[image: Define Function With Returned Value]
Once the definition of the function block is complete, click on the cog symbol once again to close the definition box.
Remember to leave the function definition block in the KookaBlockly workspace!

[image: Defined Function With Returned Value in Palette]
The function block will then be available in the palette for use elsewhere in the script:

If Condition Return

This block can be used in both the Function Definition and Function Definition With Return Value blocks.

[image: Function Conditional Return Block]
It will check the True / False condition in the first value block input and if it is True it will
end the function immediately, returning the value in the second input .

If used inside a Function Definition block (without a return value) the returned value input will not be available.
Instead the block will just end the function if the input condition is True.

This block cannot be used outside of the Function Definition blocks. If this is attempted the block will be blanked out.

[image: Function Conditional Return Block Warning]
The following is an example of the use of the If Condition Return block with a function named direction.

[image: Function Conditional Return Example]
The function tests the sign of the acceleration read from the Z axis of the internal accelerometer.
If Z acceleration is negative then the tested condition is True which means the Kookaberry is facing up, and the string "up" is returned.
Otherwise, that is the condition is False, which means the Kookaberry is tilted face-down. The function completes and returns the string "down".

The main script is a loop which repeats every second and prints the value of the function on the display.
The display will change as the Kookaberry is oriented face-up or face-down.

Footnotes

Advanced

The Advanced Category is provided to extend the capability of KookaBlockly by allowing the
definition of additional blocks using Python programming statements. See Fig. 72.

[image: _images/advanced-palette.png]

Fig. 72 The Advanced block palette

This category is available to the more advanced user as a way of transitioning from KookaBlockly to Python scripts, and
also to add extended functionality such as using special sensors and actuators and other
Kookaberry peripherals, or using Python module libraries.

Important

When typing in the Python statement, please do not use the single quotation mark '
as this will cause the saved script to not be loaded back in from file correctly.
Always use the double quotes " character, as in the example shown at the end of this section.

Python Value

This value block allows the result of any Python statement to be passed to KookaBlockly block input sockets.

[image: Python Value Block]
The Python statement is typed into the text box in the block. In the default block, the statement 1+1
results in the output value of 2.

Python Action

This action block permits any Python statement to be inserted into a KookaBlockly script. The
statement is typed into the text box in the block.

[image: Python Action Block]
Typical usage might be to import a library module, for example “import math”,
or “import mymodule" where a customised module has been developed,
or anything else that is permitted in Python syntax.

It can also be used to insert comments into the script by prefixing the inserted text with a # character,
designating that the following text is a comment.

[image: Creating an in-line comment using the Python Action Block]

Advanced Example

KookaBlockly does not, at this stage, provide any blocks to read a text file.

This example reads a plain text file using the Advanced blocks and prints each line that is read on the display.

[image: Text File Reading Example Using Advanced Blocks]
This script uses two Python Action blocks to insert in-line comments in the KookaBlockly and the resulting MicroPython script.

Three variables need to be created:

	filename which is set to a string containing the files’ name "my_file.txt"

	f which is used to store a List of lines coming from the text file

	line which temporarily stores each line from the file as they are read in the loop.

Only one Python Value block is needed that sets the variable f to a List of lines created by opening the text file using a Python statement.

The MicroPython code that the KookaBlockly script generates is shown below.

import machine, kooka
import fonts

filename = None
f = None
line = None

On-start code, run once at start-up.
if True:
 # Open the text file for reading
 filename = 'my_file.txt'
 kooka.display.setfont(fonts.mono6x7)
 kooka.display.print('Printing', filename, show=0)
 f = open(filename,'rt')
 # Loop that reads and prints each line of the file
 for line in f:
 kooka.display.print(line, show=0)
 kooka.display.print('End', show=0)

Main loop code, run continuously.
while True:
 kooka.display.show()
 machine.idle()

To run the above script, a text file called my_file.txt should be stored on the Kookaberry’s file system in its root folder.
The file contains the following:

This is line 1
Line 2
This is line 3
Line 4
The last line

When the script is run, the appearance of the Kookaberry display is as below:

[image: The Kookaberry Display when the Advanced Block Example Script is run]

Footnotes

Glossary of Terms

This glossary contains the definitions of terms used throughout this KookaBlockly Reference Guide
and is intended to demystify the vocabulary often used in association with computers and software.

	Kookaberry
	The Kookaberry is a microcomputer specifically designed for STEM educational applications.
See https://learn.auststem.com.au/exploring-the-kookaberry/

	KookaSuite
	A suite of programming tools for the Kookaberry comprising KookaBlockly visual coding tool,
KookaIDE a MicroPython integrated development tool, and KookaTW a tool for mirroring / virtualising the Kookaberry’s display and buttons.

	Visual Code Editor
	A visual code editor allows users to work with code visually but still involves actual code blocks or snippets.
It might use drag-and-drop interfaces, code blocks, or other visual elements to assist in code creation.
Visual code editors often aim to make coding more accessible to beginners or those who are not familiar with traditional text-based coding environments.
It differs from a graphical code editor that may involve more abstract graphical representations of code structures, while
visual code editors usually retain a connection to the actual code, using visual elements to enhance the coding experience.
See also https://en.wikipedia.org/wiki/Visual_programming_language

	OLED
	Organic Light Emitting Diode - the lighting technology that is used in the Kookaberry’s display - see https://en.wikipedia.org/wiki/OLED

	LED
	Light Emitting Diode - a semiconductor that emits a specific wavelength of light when energised.
The Kookaberry has three LEDs on the front under the display. They emit red, yellow and green light.
There are two further LEDs on the back: a green LED indicating the Kookaberry has power,
and a blue LED which indicates file writing activity, or if pulsing slowly indicates the Kookaberry’s power supply voltage is low.
See also: https://en.wikipedia.org/wiki/Light-emitting_diode

	GPIO
	General Purpose Input and Output - the electrical signals to and from a microcomputer are connected by these,
and are referred to as Pins by KookaBlockly. See also https://en.wikipedia.org/wiki/General-purpose_input/output

	USB
	Universal Serial Bus - a communications and power connection used by the Kookaberry to communicate with the programming personal computer,
and the receive power. See also https://en.wikipedia.org/wiki/USB.

	MicroPython
	A variant of the computer programming language Python developed for use on micro-computers.
The Kookaberry is programmed using MicroPython and has a built-in compiler accessible through editors such as KookaIDE and Thonny.
KookaBlockly automatically generates MicroPython code when the user assembles a script from KookaBlockly’s visual blocks.
See also https://en.wikipedia.org/wiki/MicroPython

	Python
	A high-level computer programming language that was designed to be easy to use and easily comprehended.
It nonetheless is a very powerful language and is now favoured by educational institutions as the first-taught computer language.
See also https://en.wikipedia.org/wiki/Python_(programming_language)

	IDE
	Integrated Development Environment - a software application that integrates code editing, testing and sometimes code debugging tools.
Examples relevant to KookaBlockly and the Kookaberry are KookaIDE and Thonny.
See also https://en.wikipedia.org/wiki/Integrated_development_environment

	STEM
	Science, Technology, Engineering and Mathematics - an umbrella term to group these disciplines in the context of education and career development.
See also https://en.wikipedia.org/wiki/Science,_technology,_engineering,_and_mathematics

	Raspberry Pi Pico
	A microcomputer developed by the Raspberry Pi Foundation based on their RP2040 microprocessor chip.
The RP2040 microprocessor chip is used in later hardware versions of the Kookaberry.
See also https://en.wikipedia.org/wiki/Raspberry_Pi

	STM
	STMicroelectronics N.V. commonly referred to as ST or STMicro is a multinational corporation and technology company of French-Italian origin.
STM microprocessors are used in the original hardware version of the Kookaberry.
See https://en.wikipedia.org/wiki/STMicroelectronics and https://en.wikipedia.org/wiki/STM32

	Micro:Bit
	A microcomputer for STEM applications developed in the United Kingdom by the BBC (British Broadcasting Corporation).
It also is programmed using MicroPython, and has two official visual programming tools, being Microsoft MakeCode, and Scratch.
The Micro:Bit differs from the Kookaberry in that it can contain only one program at a time, it has just two buttons and an 8x8 LED matrix display,
and it has no electrical sockets with which to connect peripherals, relying instead on using alligator clips or an expansion board.
See also https://en.wikipedia.org/wiki/Micro_Bit and https://en.wikipedia.org/wiki/Scratch_(programming_language)

	Windows
	A personal computer operating system licensed by Microsoft. KookaSuite will run on Windows V10 and later versions.
See https://en.wikipedia.org/wiki/Microsoft_Windows

	MacOS
	A personal computer operating system developed by Apple.
KookaSuite will run on MacOS V13 and later versions using the Intel and Apple’s M processors.
See also https://en.wikipedia.org/wiki/MacOS

	Raspbian
	Latterly named Raspberry Pi OS, a personal computer operating systems for the Raspberry Pi microcomputer licensed by the Raspberry Pi Foundation.
Raspbian is based on the Debian Linux operating system.
See also https://en.wikipedia.org/wiki/Raspberry_Pi_OS

	Thonny
	An open-source Integrated Development Environment tool tailored for programming in Python.
See https://en.wikipedia.org/wiki/Thonny

	Firmware
	Low-level computer software that is stored on on-board non-volatile memory.
It performs basic low-level tasks to control and monitor the computer hardware, and to make it accessible to high-level software, such as MicroPython.
Firmware updates may sometimes be issued that extend the functionality of a computer, or to remedy bugs or security weaknesses in the firmware.
The Kookaberry’s firmware is updated from time to time for the same reasons.
See also https://en.wikipedia.org/wiki/Firmware

	Real Time Clock (RTC)
	A specialised clock chip that keeps precise time. RTCs can be built into a microcomputer and / or be connected externally.
Often external RTCs have a small battery that keeps the clock running when the microcomputer is turned off.
The microcomputer can then synchronise its internal RTC with the battery-powered external RTC.
See also https://en.wikipedia.org/wiki/Real-time_clock

	ASCII
	American Standard Code for Information Interchange - a character encoding standard for electronic communication.
ASCII codes represent text in computers, telecommunications equipment, and other devices.
MicroPython uses ASCII code when encoding character strings.
See also https://en.wikipedia.org/wiki/ASCII

	CSV
	Comma-Separated-Values - a text file format in which each line contains alphanumeric text data which are separated by commas.
The first line of the files can be used to represent headings for the data item columns that are in the following lines.
CSV formatted files are recognised and can be directly opened by spreadsheet programs.
See also https://en.wikipedia.org/wiki/Comma-separated_values

	GitHub
	A software platform that allows developers to create, store, and manage their code. GitHub was acquired by Microsoft in 2018.
It is commonly used to host open-source software development projects.
KookaSuite and the Kookaberry firmware are both distributed using GitHub.
This document is also maintained and distributed using GitHub and Read the Docs.
See also https://en.wikipedia.org/wiki/GitHub

	Read the Docs
	Read the Docs is an open-source free software documentation repository and hosting platform. This document is hosted on Read the Docs.
See also https://en.wikipedia.org/wiki/Read_the_Docs

	Open-Source
	Open source is software source code, hardware designs, documentation, artworks or other intellectual products that are made freely available
for possible modification and redistribution, under certain licensing conditions, in a spirit of sharing and collaboration for the greater good.
See also https://en.wikipedia.org/wiki/Open_source

	Software and Hardware
	Software is a collection of programs and data that tell a computer how to perform specific tasks.
Software often includes associated software documentation.
This is in contrast to hardware, which comprises the physical components from which the system is built
and which actually performs the computing work.
See also https://en.wikipedia.org/wiki/Software and https://en.wikipedia.org/wiki/Computer_hardware

Footnotes

Index

 A
 | C
 | F
 | G
 | I
 | K
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	ASCII

C

 	
 	CSV

F

 	
 	Firmware

G

 	
 	GitHub

 	
 	GPIO

I

 	
 	IDE

K

 	
 	Kookaberry

 	
 	KookaSuite

L

 	
 	LED

M

 	
 	MacOS

 	
 	Micro:Bit

 	MicroPython

O

 	
 	OLED

 	
 	Open-Source

P

 	
 	Python

R

 	
 	Raspberry Pi Pico

 	Raspbian

 	
 	Read the Docs

 	Real Time Clock (RTC)

S

 	
 	Software and Hardware

 	
 	STEM

 	STM

T

 	
 	Thonny

U

 	
 	USB

V

 	
 	Visual Code Editor

W

 	
 	Windows

 _images/if-do-config.png
(&) if
do

_images/if-do-else.png

_images/functions-return-conditional-warning.png
Warning: This block may be used only within a function definition.

_images/functions-return-conditional.png

_images/if-do-elseif.png

_images/logging-clear-file.png
log.csv

_images/win-install-5.png
=

"3 KookaSuite Setup —

Product Features
Select the way you want features to be installed.

[E] el
5| KookaBlockly
‘9| KookalDE
‘9| KookaTW

The suite of Kookaberry applications.

This feature requires OKB on your hard drive. It has 3 of 3 subfeatures selected. The subfeatures
require 13KB on your hard drive.

Back @ Install Cancel

_images/if-do-rightclick.png
Duplicate _
Add Comment

Collapse Block

Disable Block
Delete Block
Help

_images/win-install-4.png
=

"3 KookaSuite Setup

Kookaberry Script Directory
Location for Kookabery scripts.

User Kookaberry scripts will be located in:

C:\Users\Public\Kookaberry Scripts\

Back

Next

Cancel

_images/logging-to-file-1.png
R log.csv

_images/win-install-folders.png
@ New~ o0 (0[O e) W Nosort v

& > v A 70« Local Disk (C) > Users > Public > Kookaberry Scripts > v G Search Kookaberry Scripts »p
v [This PC O Name Date modified Type Size

) leaiok@ | ooty wopse o
> == KOOKABERRY (D:) 7 KookalDE 8/10/2023 3:42 PM File folder

> Extreme SSD (E)

2 items E]

_images/logging-palette.png
get clock as ([IHMLERS
1.2

log.csv

get clock as (IHMLERS
1.2

34

Math

Variables
Functions
Advanced

log.csv
get clock as (THUERS
1.2
3.4
5.6

_images/win-install-7.png
KookaSuite Setup -

| k..K. Completed the KookaSuite Setup Wizard

berry

Click the Finish button to exit the Setup Wizard.

Back

Cancel

_images/logging-to-file-3.png
log.csv

hh:mm:ss

_images/windows-protect2.png
Windows protected your PC

Microsoft Defender SmartScreen prevented an unrecognised app from
starting. Running this app might put your PC at risk.

Application: KookaSuite-1_9_0-Win64.msi
Publisher: Unknown publisher

=

_images/logging-to-file-2.png
log.csv

hh:mm:ss

_images/windows-protect1.png
Windows protected your PC

Microsoft Defender SmartScreen prevented an unrecognised app from

starting. Running this app might put your PC at risk.
More info

_images/loops-breakout-warning.png
Warning: This block may only be used within a loop.

A break out v

_images/loops-breakout-example.png
repeat . some_condition
3 7 | everything is OK

el [T Hello
Jisplay p

_images/workspace-zoom-trash-scrollbars.png
©®0 |m

_images/loops-count-with-example.png
display set font to
count with [{l# from to by I
display print B

_static/file.png

_images/loops-count-with-example-display.png
- S

_images/lists-variable.png
set (FEP to (&) create empty list

_images/lists-text-with-delimiter-example.png
set to

ELGH list from text v alpha,beta,gamma,delta with delimiter -
el GH text from list v with delimiter -

_images/win-install-3.png
=

"3 KookaSuite Setup —
Destination Folder
Click Next to install to the default folder or click Change to choose another.

Install KookaSuite to:

C:\Program Files\Kookaberry\KookaSuite\

Change...

{8 Create shortcuts for this program on the desktop.

Back Cancel

_images/functions-palette.png
Control
Clock
Display
Buttons
LEDs
Pins

B @) L my_function

Sensors

Actuators n
Rado (&)) def
Logging
Boolean
IfElse
Loops
Strings
Lists

Math if ‘ return '

Variables

I Advanced

_images/functions-return-conditional-example.png
every [P seconds

RO direction
I get accelerometer 4R 0 retumn “wy»

|

_images/functions-definition-return.png
input name:

nput name:

allow statements

(&) (2) def arguments: diameter

diameter ~

_images/functions-definition.png
input name: E

E1@) i my_function |

_images/variables-create-post.png
Create variable...

set to
change by

my variable

_images/lists-remove.png
in list

remove - % - | |

get

get and remove

v remove

_images/variables-palette.png
Control
Display
Buttons
LEDs
Pins.
Sensors
Actuators
Radio
Logging

Boolean
IfElse
Loops
Strings
Lists
Math

I Functions
I Advanced

_images/lists-palette.png
Control
Clock
Display
Buttons
LEDs
Pins
Sensors
Actuators
Radio
Logging

Boolean
IfElse
Loops
smngs
| Lsts |
Math

Variables
Functions
Advanced

() create empty list

() create list with

create list with item ‘ repeated . times

in list occul

=lo]yf numeric v ascending

_images/variables-example.png
every [seconds

scale temperature [icelay min=

max=

_images/lists-set.png
in st (7 (8 | X8 €xBof] = off]

v set

insertat

_images/variables-set-dropdown.png
set to

v my_variable
Rename variable.

Delete the 'my_variable' variable

_images/lists-set-index.png
inist (| (50 | %8 XD == off

#from end
frst
last

random

_images/variables-right-click.png
Create variable...

set to
change by

my variable

Delete the 'my_variable' variable

Rename variable.

Help

_images/lists-sort-example.png
set (B to = (&) create list with |

for each item (KB in list

do dpay it _ (XD

Slejpe alphabetic, ignore case v

ascending ~

_images/variables-value.png
my variable v

_images/lists-sort-example-display.png

_images/variables-set.png
S5l my variable v i)

_images/lists-sort-type.png
Slolat numeric ¥ j| ascending

v numeric
alphabetic
alphabetic, ignore case

_images/win-install-2.png
KookaSuite Setup
' End-User License Agreement
Please read the following license agreement carefully

Kookaberry License Agreement

This software is the Kookaberry IDE Software and is developed for use

in conjunction with Kookaberry hardware.

ITHIS SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
IWARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR

(81 accept the terms in the License Agreement

Print Back Cancel

_images/lists-sort-order.png
Slolat numeric ¥ j| ascending

v ascending
descending

_images/win-install-1.png
"3 KookaSuite Setup

‘kooka
berry

Welcome to the KookaSuite Setup Wizard

The Setup Wizard will install KookaSuite on your computer. Click
Next to continue or Cancel to exit the Setup Wizard.

Back Cancel

_images/lists-length-example.png
set (EEB to = (2] create list with

beta

gamma

(Jl Length of list is length of (| (58 ‘

_images/variables-create-dialog.png
New variable name:

o

_images/lists-is-empty.png

_images/variables-change.png
change by

_images/lists-make-with-delimiter.png
LG list from text . with delimiter -

v listfrom text

text from list

_images/math-constrain.png
constrain ' low . high

_images/math-is-test.png
- [even

v even
odd
prime
whole
positive
negative
divisible by

_images/math-is-divisible-by.png
[[divisible by ~ [|

_images/math-multiply-add-example.png

_images/math-modes-of-list-example.png
display print (TEREEED of list .~ (&) create list with (EFE)

123
123

_images/math-number-example.png
U 123456.7

_images/math-multiply-add.png

_images/math-number.png

_images/math-number-squareroot.png

_images/math-of-list.png
[sum * K

v sum
min
max
average
median
modes
standard deviation

random item

_static/minus.png

_images/loops-palette.png
Control
Clock
Display
Buttons
LEDs
Pins

Sensors
Actuators
Radio

oo EEE while -)

If-Else do

count with ([{E# from ' to

for each item (B in list

of loo

_images/loops-for-item.png
for each item ([in list

v

i

Rename vetle -

Delete the ' variable

_static/plus.png

_images/loops-repeat.png
repeat times

_images/loops-repeat-while.png
repeat

_images/mac-install-2.png
eoce [KookaSuite-v1.10.0

B EE - B ERED R ENERE
R [CETSECT -~ KookaBlockly
| @ Launchpad a KookalDE
v = Mail a, KookaTW
 Maps
[Documents | & Messaoes
B Mission Control
B Recent 2 Music
[Desktop & News

2 Notes
° Downloads /& Photo Booth

@ Airdrop & Photos "

_images/mac-install-1.png
eo0e K KookaSuite 1.10.0

A A A

KookaBlockly KookalDE KookaTW

_images/math-arithmetic.png

_images/math-arithmetic-example.png

_images/math-constants.png

_images/math-atan2.png
atan2 of X: ‘ Y: '

_images/loops-count-with.png

_images/buttons-when-was-pressed.png
when button was pressed

oo w >

_images/clock-get-extended-display.png
16:34:21-03. 10,2023

_images/buttons-when-is-pressed.png

_images/buttons-when-was-pressed-exit.png
A

_images/clock-get-external-extended.png
get external clock on SCL= | ([GEI¥ED SDA= -5 YYYY/MM/DD - | -

P2
P3A

v P3B
P4
P5

_images/clock-get-external-simple.png
get external clock on SCL= SDA= . -5 YYYY/MM/DD

P2

v PR
P38
P4
P5

_images/clock-get-extended-script.png
display set font to
k

every seconds

display clear

&splay print (. get clock as - DD/MM/YYYY -

_images/clock-get-extended.png
e - YYYY/MM/DD + N - |

(nothing)

< YYYYMMDD
YYYY-MM-DD
DDIMMAYYYY
DD-MM-YYYY
hivmm
hivmimss

weekday

_images/clock-get-simple.png
elseelole o8 YYYY/MM/DD ~

(nothing)

< YYYYMMDD
YYYY-MM-DD
DDIMMAYYYY
DD-MM-YYYY
hivmm
hivmimss

weekday

_images/kblockly-print-dialogue.png
K Print Preview ? X

49.1% vﬁ\@\@-¢¢ 1713 H =

_images/sensors-get-power-ina219-shunt.png
get from INA219 on SCL= | SDA= address= shunt= max-amps=

v 001
0.05
01

_images/clock-palette.png
I control

Display

Buttons LR R YYYY/MM/DD «

LEDs
Pins.

Sensors L e YYYY/MM/DD ~ N -]

Actuators

Radio
ez W 2022/1/1 10:00:00

Boolean

Internal clock

g External clock
Loops
Strings

Lists get external clock on SCL= SDA= = YYYY/MM/DD -

Math

Variables
Functions

get external clock on SCL= SDA= ~ YYYY/MM/DD - | -

Advanced

set internal clock from external clock on SCL= SDA=

set external clock on SCL= SDA= from internal clock

set external clock on SCI

to 2022/1/1 10:00:00

_images/sensors-get-power-ina219-pins.png
get from INA219 on SCL= SDA= - address= shunt= [(NEIED max-amps=

_images/kblockly-show-display-window.png
K Kookaberry display = (m] X

| Kookaberry menu Kookaberry reset () stay on top

Hello

Helcome to

the Kookaberry
Have fun'!

_images/sensors-get-soil-moisture.png
get soil moisture on P1 ~

P2
P3A
P38
P4
P5

_images/kblockly-save-dialogue.png
N Save Kookaberry Blockly program

& > v AN Tl « Public > Kookaberry Scripts > KookaBlockly

C

Search KookaBlockly

Organize ~ New folder 8 -
> Tl Conectkd Code] UART Test 1 kby.py
> T CubeSat .
] Test BMPE280.kby.py
> T2 Damien
| Radio_TX Test2.kby.py
> Tl Kooka Mapping
"] Radio_TX _Testkby.
> THMISC I j i
> B Misc2 | Radio_RX _Test.kby.py
> T Tony ﬁ] Inclinometer.kby.py
File name: ‘
Save as type: Kookaberry Blocky files (*.kby.py)
A Hide Folders Save Cancel

_images/sensors-get-power-ina219.png
get CENERUIRED from INA219 on SCL= SDA= address= shunt= max-amps=

v power (W)
current (&)
voltage (V)
supply voltage (V)

_images/kblockly-welcome-script.png
K Kookaberry KookaBlockly v1.10.0 - C:/Users/tdstr/Kookaberry Scripts/KookaBlockly/STEM Workshop/Welcome kby.py = [u] X

I“I k .k.. .Ckly Serial: Show script Show display

New Load Save Save As Print Run Stop At Start Up ‘Scrip[s j ‘Choose a script j

Control
Clock
Display
Buttons
= every loop

Pins. "
display clear
Sensors DY)

LS display print
Radio
Logging display show

Boolean
IfElse sleep for n seconds

Loops
Strings display print Welcome to

Lists.
N:ain display print the Kookaberry

Variables display show
Functions

Advanced I 10]

do | gleep for m seconds

toggle

sleep for m seconds

toggle

sleep for m seconds

toggle
hgg

display print Have fun!

display show

sleep for . seconds

-

_images/sensors-get-temp-bme-pins.png
get from BME280 with address on SCL=

v PR
P38
P4
P5

_images/kblockly-show-script-window.png
K Kookaberry script

1 import machine, kooka
2 import time

3
4
5

6 # Main loop code, run continuously.
7while True:

8

9
10
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

kooka.display.clear()

kooka.display.print('Hello', show=0)

kooka.display.show()

time.sleep(1)

kooka.display.print('Welcome to', show=0)

kooka.display.print('the Kookaberry', show=0)

kooka.display.show()

for count in range(10):
time.sleep(0.1)
kooka.led_green.toggle()
time.sleep(0.1)
kooka.led_orange.toggle()
time.sleep(0.1)
kooka.led_red.toggle()

kooka.display.print('Have fun!', show=0)

kooka.display.show()

time.sleep(2)

kooka.display.show()

machine.idle()

[m] X

(J stay on top

_images/sensors-get-temp-bme-adx.png
get from BME280 with address on SCL= | SDA= | |

v 0T

0x76

_images/kblockly-atstartup1.png
K Selectpro.. ? X

Program to run at start up:

<none> v

Cancel

_images/sensors-get-power-ina219-max-amps.png
get from INA219 on SCL= | | SDA= address= shunt= max-amps=

75

_images/kblockly-atstartup-folder.png
K Select location to create main.py X

& > v A == > KOOKABERRY (D) > v G Search KOOKABERRY (D) »p
Organise * New folder =- 0
KOOKABERRY (D:) Name Date modified Type
Tlapp app 1/01/2021 12:00 AM File folder
b I Db 1/01/2021 12:00 AM File folder

Folder: KOOKABERRY (D:)

Select Folder Cancel

_images/sensors-get-power-ina219-address.png
get from INA219 on SCL= | SDA= address= shunt= max-amps=

v 64

65
68
69

_images/kblockly-confirm-saveas.png
Confirm Save As

A Inclinometer kby.py already exists.
Do you want to replace it?

Yes

_images/sensors-get-power-ina219-maxamps-050.png
shunt= max-amps= (S

v 06
15
3
6

_images/kblockly-atstartup2.png
K Selectpro.. ? X

Program to run at start up:

<none>
<none>

Features
Print

_images/sensors-get-power-ina219-maxamps-001.png
shunt= max-amps=

v 3
75

_images/kblockly-logo.png
KOoKaBlockly

_images/kblockly-load-dialogue.png
I Load Kookaberry Blockly program X

& > v /N T « Users » Public > Kookaberry Scripts > KookaBlockly v C Search KookaBlockly »p
Organize ~ New folder 8- °
ﬁ Home c y
[] UART Test_1.kby.py | Test_BMPE280.kby.py
> @ OneDrive - Personal .
[] Radio_TX Test2 kby.py [] Radio_TX Test kby.py
|ﬂ~ Radio_RX_Test.kby.py r] Inclinometer.kby.py
@l Desktop »
. . . |] Cubesat_Demo_Tony.kby.py || Clock kby.py
Downl S
B Documents » |] BMP280_Testkby.py || BME280_Testkby.py
PR Pictures » |: Accelerometer_Test.kby.py
0 Music »
i videos »

T KookaBlockly - Updates
T Screenshots

T3 PICO

File name: v | Kookaberry Blocky files (*.kby.p
Open Cancel

_images/sensors-get-power-ina219-maxamps-100.png
shunt= [((KIED max-amps= (RS

v 03
075
15
3

_images/clock-set-internal-from-external-clock.png
set internal clock from external clock on SCL= SDA= |

P2

v PR
P38
P4
P5

_images/control-palette.png
Clock
Display
Buttons
LEDs
Pins

Sensors
Actuators every (£ seconds
Radio

Logging

Boolean
If-Else

Lewrs every loop
Strings

Lists.

Math

Variables

Functions .
o — exit program

sleep for - seconds

fnpn

power down for ﬂ seconds

time (s)

time (ms)

_images/clock-set-external-from-string.png
set external clock on SCL= SDA= . to 2022/1/1 10:00:00

P2

v PR
P38
P4
P5

_images/clock-set-from-string.png
W 2022/1/1 10:00:00

_images/display-image.png
transparent?

display image

_images/display-line.png
display line x1= i)
yi= Y
x2= N

Zall . 10
colour= &M

_images/display-clear.png
display clear

_images/display-coordinates.png
K Kookaberry display = (m] X

Kookaberry menu Kookaberry reset () stay on top

coordinotes

_images/display-palette.png
I control
Il Clock
B ous
| Lepbs

Pins
| coms

Actuators
[l Radio Hello
I Logging
I Boolean .

If-Else dispiay print W IEETNR 2 ofEEE)
I Loops
|| Sstings
I s (0]) colou (1]
I wmath
I Variables display line x1=

Functions

yi1=

I Advanced

x2=
y2=

colour=

display rectangle x=
y=

width=

height=

colour=

fill? @ reverse? @

&L} colour:

isplay text valut

displayimage= @ OO 00000
(AR NN NN N]
ssssossee
asssossee
ssssosses
ssssosses
(AR NN NN N]
0000000

transparent? @

_images/sensors-get-accelerometer-lsm303.png
=14 accelerometer magnitude v RigelgWES|V iR R{ol SDA=

 accelerometer magnitude

accelerometer X
accelerometer Y
accelerometer Z
‘compass strength
‘compass heading
‘compass X
compass Y

compass Z

_images/if-palette.png
Control
Clock
Display
Buttons
LEDs
Pins
Sensors
Actuators
Radio
Logging

Boolean
[
Loops
Strings
Lists
lath

Variables
Functions
‘Advanced

——— ——— -
=

_images/sensors-get-accelerometer.png
get accelerometer

v X
Y
z

magnitude

_images/if-do.png

_images/sensors-get-accelerometer-maths.png
get accelerometer E4B)| * &

v

X
3
z

magnitude

_images/kberry-virtual-blank.png
K Kookaberry display = (m] X

Kookaberry menu Kookaberry reset () stay on top

_images/sensors-get-lux-veml7700-pins.png
get lux from VEML7700 on SCL= SDA= .

P2

v PR
P38
P4
P5

_images/kberry-front-photo.png
|®

I
\Ji e
B
Fllle

_images/sensors-get-compass-strength.png
get compass

v strength

heading
b3
Y
z

_images/rpi-menu.png
KookaBlockly
"3) Geany Programmer’s Editor # KookalDE

m Thonny ~ KookaTW

Preferences

Shutdown...

_images/rpi-menu-editor.png
Main Menu Editor

~ & Applications Show Item ‘ New Menu
v @ Programming v KookaBlockly

v

@ Education KookaTW

New Item

New Separator

Q Internet Move Up
Sound & Video
¥ Graphics

“ Games Delete
Bl Other Properties
@ System Tools
§ Accessories

& Universal Access

& Help

Preferences

Move Down

4

Cancel OK

_images/script-control-buttons.png
New Load Save Save As Print Run Stop At Start Up

_images/scheduled-loop.png

_images/sensors-get-accelerometer-lsm303-pins.png
get EREETIECRED from LSM303 on SCL= SDA= | CEEED

P2

v PR
P38
P4
P5

_images/scripts-dropdowns.png
Scripts

j ‘Hello.py

_images/clock-set-external-from-internal-clock.png
set external clock on SCL= ST | from internal clock

P2

v PR
P38
P4
P5

_images/display-print.png
display print Hello

_images/display-rectangle-example-display.png

_images/display-print-and-tw.png
K Kookaberry display = (m] X

Kookaberry menu Kookaberry reset () stay on top

_images/display-print-and.png
display print and 123

_images/display-setfont.png
display set font to

7 monosx5
monobx7
mono8x3
mono8x13

sansi2

_images/display-show.png
display show

_images/display-rectangle-example-script.png
display clear

display rectangle x= |

w
o

y= |
width="|{
height={
colour=
fill? @ reverse? @

display rectangle x= |

N W
o O

y= |
width={
height={
colour=

fill? @ reverse? ¥4
_fi?@ 9

w
o

38egs [

_images/display-rectangle.png
display rectangle x= |
Y= 9
width="|{

height= |

colour= |

fill? @ reverse? @

_images/lists-get-example.png
set to

(&) create list with

_images/time-msecs.png

_images/strings-value.png

_images/lists-get-remove-example.png
set (EEBD to (&) create listwith | &€ ETNRED 22
S beta 24

o« =
repeat (MIIND [z is empty

inlist ‘

_images/unsaved-exit-prompt.png
K KookaBlockly X

0 You have unsaved changes.

Do you want to exit?

No

_images/lists-get-index.png
i list]

#from end

frst
last

random

_images/time-secs.png

_images/lists-get-sublist.png
in list (| get sub-list from m. to m'

_images/unsaved-script-load.png
K KookaBlockly

0 You have unsaved changes.

Do you want to load Demo Bar Graph
Function.py?

No

_images/lists-get-sublist-example.png
set (FBB to = (&) create list with |

set to L iniist get sub-list from EB [Y last v |

_images/unsaved-new-prompt.png
K KookaBlockly X

0 You have unsaved changes.

Do you want to start a new program?

No

_images/lists-insert-at-example.png
set (BB to (2) create listwith | &6 ETLE) »?

in list last + JEE

_images/variables-change-example.png
-~ count b - CH

exit program
set (MR to
Ggloount d - RGN

change by
every loop
display clear C
display print Button Counter change 5y
display print “ and |
| : D
display print and change by
display print “ and ‘

display print Press A to exit
oy play p

_images/lists-get.png
inlist (7 (A | =XD €xaf]

get and remove

remove

_images/variables-change-example-display.png
B
]
C
D
P

ress A to exit

_images/lists-create-with-delimiter.png
set L SETENC ist from text + k1 alpha,beta,gamma,delta |- BRUINe Ll e -

_images/strings-to-float.png
convert ‘ to float

_images/lists-create-with-2.png
(&) create list with

_images/strings-palette.png
Control
Clock
Display
Buttons
LEDs
Pins . .
SereT format ' as integer, width

Actuators

Radio

Logging

Boolean o 3 :

pooe format ' as float with 2 decimals, width
Loops

I st
1

Math

convert ‘ to integer

Variables
I Functions
I Advanced

convert ‘ to float

_images/lists-find-occurrence.png
in list (| find occurrence of item '

v first

last

_images/lists-find-occurrence-example.png
set (BB to = (&) create list with | €€ ENE) 22
| beta [

. gamma [

Index is in list find occurrence of item (€€] ‘

_images/strings-to-integer.png
convert ‘ to integer

_images/display-pixel.png
display pixel x= n y= n colour=

_images/display-print-and-example.png
display clear

display set font to ({0

_images/functions-definition-input-x.png
input name: %

input name:
‘

EBRONCER my function TN

_images/functions-definition-input-y.png
input name:

input name:

input name: %
‘

(&) (2) def arguments: X, y

_images/exit-program.png

_images/functions-definition-description.png
input name:

iobut name:
Describe this

function. . .| but name: %

(&) (2) def arguments: X, y

_images/functions-definition-return-paletted-block.png
circumference with arguments:

diameter

_images/functions-definition-name.png
input name:

input name:

input name:
b 0

(&) (2) def §my_function) arguments: x, y

_images/functions-definition-paletted-block.png
my_function with arguments:

X

y

_images/sensors-get-temp-ntc.png
get temperature from NTC on

V0 7.28e-4 [N:EN 2 82e-4 e 2.34e-8

P2
P3A
P38
P4
P5

_images/leds-turn-on.png
red

v red
orange

green

_images/serial-dropdown.png
Serial: Kookaberry on W\COM3 j
Auto-connect
Disable

Kookaberry on W\COM3

Scripts

_images/leds-turn-off.png
red

v red
orange

green

_images/sensors-palette.png
(Carmire Internal sensors

Clock

gy get accelerometer [IEFTITEERS
Buttons

LEDs

Pins get accelerometer

nsol

I Actuators

I Rado Ty strengin -]

I Logging

1 Bookean External sensors

I itEse

I Loops get temperature from DS18x20 on | (GHIED

I strings

I L get temperature from NTCon | (B A= (FE) . B=- B | C= EEED)
Math

| Variables

I . (4 tem R from [BIEIKEES on P1 -

I Advanced

get from BME280 with address onSCL= | G | SDA= | GEEED

£ accelerometer magnitude ~ BiCHITESVRIERLESCICNN P3A - NESLCHN P3B - |

get lux from VEML7700 on SCL= | (GEINE@ SDA- | GEEED

get (RIS from INA219 on SCL= | [GE/NE@ SDA= | GEEE® address= (S shunt= max-amps= EXEB

get soil moisture on , dry= BiKE] Vwe(=ﬂv

_images/lists-create-example.png
set to (&) create listwith | € »
B beta B

_images/sleep.png

_images/lists-create-empty.png
(¢) create empty list

_images/show-script-display-buttons.png
Show script Show display

_images/lists-create-with-1.png
(&) create list with

_images/strings-format-integer.png
format ‘ as integer, width

_images/lists-create-repeated-example.png
set (E®B to create list with item ‘ repeated times

_images/strings-format-float.png
format ‘ as float with 3 decimals, width

_images/leds-palette.png
Control
Clock

Display
Buttons

Pins
Sensors
Actuators
Radio
Logging

Boolean
If-Else
Loops
Strings
Lists
Math

Variables
Functions
Advanced

red

red

red

P1

50

100

_images/sensors-get-temp-dht-select.png
e[temperature ~ JIEInN DHT11 - EHRWP1 -

+ DHTH
DHT22

_images/kookablockly-display.png
Version ‘ K Kookaberry KookaBlockly v1.10.0 - o x - Resize/Exit

Script lh kookaBlockly Connection B ... s com - showsapt showaispy | €@ Inspection
Controls - New Load Save Save As Print Run Stop AtStartUp Scripts | choose a script - - S cript

Control .
Clock Selection
Display

Buttons.

LEDs

Phs

Sensors.

Actuators

Radio

Logging

Boolean Workspace
If-Else

Loops

Strings
Sz Scroll Bars Er——)

Math

Blocks
Palette

Variables
Functions
Advanced

Centre Script ==)
Zoom Script ==)

Trash ==)

_images/sensors-get-temp-bme.png
get from BME280 with address on SCL= | SDA= | |

pressure (hPa)
humidity (%)

altitude (m)

_images/leds-set-neopixel.png
set NeoPixel on

_images/sensors-get-temp-ds18b20.png
get temperature from DS18x20 on P1 ~

v Pl
P2
P3A
P38
P4
P5

_images/leds-rgb-venn-diagram.png

_images/sensors-get-temp-dht.png
o[=4 temperature v Kifiull DHT11 + KM P1 ~

v temperature
humidity

_images/leds-toggle.png
toggle LED

7 red ‘

orange

green

_images/every-loop-if-do.png

_images/every-loop.png

_images/display-text.png
display text value= X= n y= colour=

nav.xhtml

 Table of Contents

 		
 Welcome to the KookaBlockly Reference Guide!

 		
 Part 1 - Working With KookaBlockly

 		
 Introduction to KookaBlockly

 		
 KookaBlockly: Visual Programming Editor for Kookaberry Microprocessor Boards

 		
 Key Features

 		
 Programming With KookaBlockly

 		
 AustSTEM Learning Hub

 		
 Installing KookaBlockly

 		
 Downloading KookaSuite

 		
 Installing KookaSuite on Microsoft Windows

 		
 Installing KookaSuite on MacOS

 		
 Installing KookaSuite on Raspberry Pi

 		
 Script Folders

 		
 KookaBlockly Updates

 		
 Editing KookaBlockly Scripts Using KookaIDE

 		
 Using the KookaBlockly Application

 		
 Version

 		
 Resize / Exit

 		
 Workspace

 		
 Blocks Palette

 		
 Script Controls

 		
 Inspection Buttons

 		
 Connection

 		
 Script Selection

 		
 Scroll Bars, Centre, Zoom and Trash

 		
 KookaBlockly Conventions

 		
 Block Shapes

 		
 Block Configuration

 		
 Right-clicking

 		
 Text Delimiters

 		
 Deleting Blocks

 		
 Part 2 - KookaBlockly Function Blocks Reference

 		
 Control

 		
 On Start

 		
 Scheduled Loop

 		
 Every Loop

 		
 Exit Program

 		
 Sleep

 		
 Time (s)

 		
 Time (ms)

 		
 Clock

 		
 Internal Clock

 		
 External Clock

 		
 Set Internal Clock from External Clock

 		
 Set External Clock from Internal Clock

 		
 Set External Clock from Character String

 		
 Display

 		
 Kookaberry Display

 		
 Text coordinates

 		
 Display Clear

 		
 Display Show

 		
 Display Set Font

 		
 Display Print

 		
 Display Print-and

 		
 Display Pixel

 		
 Display Line

 		
 Display Rectangle

 		
 Display Text

 		
 Display Image

 		
 Buttons

 		
 When Button Was Pressed

 		
 When Button Is Pressed

 		
 Button was pressed

 		
 Button is pressed

 		
 Button to Exit Program

 		
 LEDs

 		
 Turn ON LED

 		
 Turn OFF LED

 		
 Toggle LED

 		
 Set NeoPixel

 		
 Pins

 		
 Pin Turn ON

 		
 Pin Turn OFF

 		
 Pin Toggle

 		
 Set Pin to Digital Value

 		
 Get Pin Digital Value

 		
 Get Pin Voltage

 		
 Get Pin Voltage as Percentage of Maximum

 		
 Set Pin to Voltage

 		
 Set Pin to Percentage of Maximum

 		
 Pin – Pulse Width Modulation (PWM)

 		
 Sensors

 		
 Internal Sensors

 		
 External Sensors

 		
 More Sensor Learning Resources

 		
 Actuators

 		
 Actuators’ Pins Connections

 		
 Set Servo to Angle

 		
 Set Servo to Angle Taking Seconds

 		
 Set Servo to Speed

 		
 Set Servo to Speed Taking Seconds

 		
 More Actuator Learning Resources

 		
 Radio

 		
 Internal Radio

 		
 External Radio

 		
 Logging

 		
 Clear File

 		
 Log To File

 		
 Boolean

 		
 Comparison

 		
 Boolean And / Or

 		
 Not

 		
 True / False

 		
 Null

 		
 Test If

 		
 If–Else

 		
 If-Do

 		
 If-Do-Else-Do

 		
 If-Do-Else If-Do-Else-Do

 		
 If-Do Configuration

 		
 Loops

 		
 Loop Repeat

 		
 Loop Repeat While / Until

 		
 Count With Variable From-To-By

 		
 For Each Item In List

 		
 Break / Continue Loop

 		
 Strings

 		
 Text

 		
 Format as Integer

 		
 Format as Floating Point

 		
 Convert to Integer

 		
 Convert to Float

 		
 Lists

 		
 Create List

 		
 Create List With Item Repeated No. of Times

 		
 Length Of List

 		
 Is Empty

 		
 In List Find First / Last Occurrence of Item

 		
 In List Get / Remove Item

 		
 In List Set / Insert Item

 		
 In List Get Sub-List

 		
 Make List / Text With Delimiter

 		
 Sort List

 		
 Math

 		
 Number

 		
 Arithmetic

 		
 Multiply and Add

 		
 Scale Function

 		
 Math Function

 		
 Trigonometric Function

 		
 Special Constants

 		
 Number Property Test

 		
 Round Number

 		
 List Operations

 		
 Remainder

 		
 Constrain

 		
 Random Integer

 		
 Random Fraction

 		
 Atan2 of X

 		
 Variables

 		
 Create Variable

 		
 Set Variable

 		
 Change Variable

 		
 Variable Value

 		
 Functions

 		
 Define Function

 		
 Define Function with Return Value

 		
 If Condition Return

 		
 Advanced

 		
 Python Value

 		
 Python Action

 		
 Advanced Example

 		
 Glossary of Terms

_images/actuators-palette.png
Control

Clock
I Display set servo
I Buttons

LEDs

to angle n degrees

Pins
I sensors

set servo

Radio

to angle n degrees taking seconds

Logging

If-Else
Loops set servo
Strings
Lists
Math

Variables

Functions set servo

Advanced

Boolean

to speed n taking seconds

_images/actuators-set-servo-to-angle-taking.png
set servo to angle n degrees taking seconds

v P
P2
P4
P5

_images/actuators-set-servo-to-angle.png
set servo to angle n degrees

P2
P4
P5

_images/actuators-set-servo-to-speed-taking.png
set servo to speed n taking seconds

v Pl
P2
P4
P5

_images/advanced-action.png
Python:

_images/advanced-example-display.png
Printing rmo_file . txt
Thiz is Line 1

Line 2

This iz Line =

Lire 4
The Lost Line
End

_images/actuators-set-servo-to-speed.png
set servo

_images/advanced-action-comment.png
2Vl # This is a comment

_images/advanced-value.png
Python:

_images/blocks-palette.png
Control
Clock
Display
Buttons
LEDs
Pins
Sensors
Actuators
Radio
Logging

Boolean
IfElse
Loops
Strings
Lists
Math

Variables
Functions
Advanced

_images/advanced-example.png
=il # Open the text file for reading

mono6x7

| Printing

_images/advanced-palette.png
Control
Clock
Display
Buttons
LEDs
Pins
Sensors
Actuators
Radio
Logging

Boolean
IfElse
Loops
Strings
Lists
Math

Variables
Functions

Ady ed

Python:

_images/radio-when-HC12-on-UART.png
when HC-12 radio on UART= receive

_images/radio-set-payload.png
- - maximum payload * [0

v maximum payload
queue length

channel
power
data rate
address
group.

timestamp units (1=ms, 2=us)

_images/rpi-installed.png
File Edit View Sort Go Tools

m | = B

W<« > 4 \ /home/pi/KookaSuite-1.10.0 v

[#|Home Folder
(A Filesystem Root

>
» [bin
» [Iboot
» [ldev
» [letc
~|lhome
v [#&pi
[1Bookshelf
=] Desktop
» [Z]Documents
|2 1Downloads

[l Music
[zalPictures
[Public

[E Templates

[@]Videos

kly

a
o)

KookaBloc- KookalDE ~ KookaTW

Yy

3items

Free space: 9.2 GiB (Total: 14.0 GiB)

_images/radio-when-radio-receive.png
when radio receive

_images/radio-HC12-send.png
HC-12 radio on UART= |

send Hello

_images/radio-HC12-send-and.png
HC-12 radio on UART= |
send {3 ”»

|
and [123

_images/radio-palette.png
Logging

Boolean
IfElse
Loops
Strings.
Lists
Math
Variables
Functions
Advanced

Internal radio

when radio receive

set radio channel to ()

ol maximum load + |) 0

External radio

when HC-12 radio on UART= | ((N§8 receive

HC-12 radio o

HC-12 radio on UART=

send

HC-12 radio on UART=

send

and

for HC-12 radio on UART=

set channel to channel1

_images/radio-HC12-set-channel.png
for HC-12 radio on UART= |

set channel to channel1

_images/radio-send.png

_images/radio-read.png
radio read

_images/radio-set-channel.png
set radio channel to 1)

_images/boolean-compare.png

_images/boolean-not.png

_images/boolean-and-or.png
v and

or

_images/boolean-test-if.png

_images/boolean-true-false.png
v tue
false

_images/boolean-null.png

_images/boolean-palette.png

_images/buttons-was-pressed.png
button was pressed

B
c
D

_images/buttons-is-pressed.png
button is pressed

B
c
D

_images/buttons-palette.png
Control
Clock
Display

LEDs
Pins
Sensors
Actuators
Radio
Logging

Boolean
ItElse
Loops
Strings
Lists
Math

Variables
Functions
Advanced

_images/pins-turn-off.png
turn pin

_images/radio-HC12-read.png
HC-12 radio on UART= read

v A
B

_images/pins-turn-on.png
turn pin

_images/pins-get-digital.png
get pin digital value

v Pl
P2
P3A
P38
P4
P5

_images/pins-get-voltage.png
get pin voltage

v Pl
P2
P4
P5

_images/pins-get-percentage.png
get pin voltage as % of maximum { KK} V

v Pl
P2
P4
P5

_images/pins-set-digital.png
set pin to digital .

v Pl
P2
P3A
P38
P4
P5

_images/pins-palette.png
Control
Clock
Display
Buttons
LEDs

Sensors
Actuators
Radio
Logging
Boolean
IfElse
Loops
Strings
Lists
Math

Variables
Functions
Advanced

turn pin | ([GZIE® | on

turn pin m off

toggle pin

setpin | (D to digital SJEN

getpin | GEED | digital value

get pin voltage

get pin voltage as % of maximum | v
set pin (D to WEED v
set pin to MED % of maximum WERY V

set PWM m to frequency m Hz, duty ' %

_images/pins-set-pwm.png
set PWM to frequency B EILLY Hz, duty %

P2
P3A
P38
P4
P5

_images/pins-set-percentage.png
P4

v P4

Ps

_images/pins-string-nomination.png
“ gz

_images/pins-set-voltage.png
P4

v P4

P5

)

_images/pins-toggle.png
toggle pin P1 -

v Pl
P2
P3A
P38
P4
P5

_images/math-random-fraction.png
random fraction

_images/math-palette.png
Control
o 23]
Display
Buttons
Pins
Sensors
Radio

Logging
Boolean
If-Else
Loops

Strings.
Lists

| Variables
Functions
I Advanced

iJi

[[Ycven -]

of list

o]
3
D
5
a
]
=5

constrain ‘ low E high ELN)

random integerfrom E) to ELN)
d t

atan2 of

8
S
o
g
Q
l &

_images/math-remainder.png

_images/math-random-integer.png
random integer from ' to '

_images/math-scale-example-fahrenheit.png
e T
scale |~ gettemperature from DS18x20 on | (B from

min=

max=

0 to
100

min=

max=

32
212

_images/math-round.png
v round
round up

found down

_images/math-sqroot.png
square root v

' square root

absolute

In
log10
o

100

_images/math-scale.png

_images/on-start.png

_images/math-trig.png
v sin

acos

atan

