
KookaBlockly Reference Guide
Release v1.10.0

Julian Dinsdale and Tony Strasser

2024-01-29

CONTENTS

1 Part 1 - Working With KookaBlockly 3
1.1 Introduction to KookaBlockly . 3
1.2 Installing KookaBlockly . 5
1.3 Using the KookaBlockly Application . 15
1.4 KookaBlockly Conventions . 25

2 Part 2 - KookaBlockly Function Blocks Reference 29
2.1 Control . 29
2.2 Clock . 31
2.3 Display . 36
2.4 Buttons . 43
2.5 LEDs . 45
2.6 Pins . 47
2.7 Sensors . 53
2.8 Actuators . 63
2.9 Radio . 66
2.10 Logging . 71
2.11 Boolean . 73
2.12 If–Else . 76
2.13 Loops . 78
2.14 Strings . 81
2.15 Lists . 83
2.16 Math . 91
2.17 Variables . 100
2.18 Functions . 103
2.19 Advanced . 108

3 Glossary of Terms 113

Index 117

i

ii

KookaBlockly Reference Guide, Release v1.10.0

KookaBlockly is a powerful standalone visual editor designed for creating program scripts for Kookaberry and related
microprocessors. This editor operates on a drag-and-drop interface, making it beginner-friendly and highly intuitive.

This document describes how to use to the KookaBlockly visual scripting tool.

KookaBlockly is part of the KookaSuite script editing toolset which was commissioned by the AustSTEM Foundation
and created by Damien George for the Kookaberry.

This guide is for KookaBlockly v1.10.0.

The document is in TWO parts:

1. Working with KookaBlockly - relates to KookaBlockly set-up, basic screen displays and usage.

2. A Reference Document for the visual functional blocks in KookaBlockly.

CONTENTS 1

KookaBlockly Reference Guide, Release v1.10.0

2 CONTENTS

CHAPTER

ONE

PART 1 - WORKING WITH KOOKABLOCKLY

In this Part 1 of the KookaBlockly Reference Guide, KookaBlockly in introduced, then instructions are given on
how the KookaSuite software package, is installed on a personal computer, how KookaBlockly is used, and finally the
conventions used by KookaBlockly are explained.

1.1 Introduction to KookaBlockly

1.1.1 KookaBlockly: Visual Programming Editor for Kookaberry Microprocessor
Boards

KookaBlockly is a powerful standalone visual editor designed for creating program scripts for Kookaberry and related
microprocessor boards. This editor operates on a drag-and-drop interface, making it beginner-friendly and highly
intuitive. It’s built upon the open-source Google Blockly library (Apache 2 license), created by Google to facilitate the
development of beginner-friendly programming languages.

Fig. 1.1 shows a KookaBlockly script assembled from visual function blocks dragged onto the workspace from the
palette of blocks on the left of the display. The blocks click together like pieces of a jigsaw puzzle to form a series of
steps that the Kookaberry microcomputer will perform.

The example shown above shows a loop that writes a welcome message on the Kookaberry display and flashes the
Kookaberry’s LEDs. It then sleeps for 2 seconds and then goes back to the beginning of the loop. The loop will run
until the Kookaberry is reset or power is removed.

KookaBlockly was created by Damien George (George Robotics – MicroPython) in collaboration with Kookaberry
Pty Ltd. It also received support from the AustSTEM Foundation, the Warren Centre, and the Vonwiller Foundation.

1.1.2 Key Features

Intuitive Visual Interface:
Users can create syntactically correct scripts and programs effortlessly, even without prior knowledge of any
programming language.

KookaBlockly enables users to assemble visual blocks into structured MicroPython (Python 3.0) code.

Compatibility:
The generated code can be utilized on most microprocessor boards that use MicroPython, but is particularly
suited to those with Kookaberry firmware for STM and RP2040 microprocessors.

Platform Compatibility:
KookaBlockly runs as a standalone program on personal computers with Microsoft Windows 10 or 11, Apple
MacOS, or Raspberry Pi Raspbian operating systems.

3

KookaBlockly Reference Guide, Release v1.10.0

Fig. 1.1: This is the KookaBlockly display with an example KookaBlockly script.

4 Chapter 1. Part 1 - Working With KookaBlockly

KookaBlockly Reference Guide, Release v1.10.0

Easy Access:
The latest version of KookaBlockly can be conveniently downloaded from the Kookaberry GitHub repository
at https://github.com/kookaberry/kooka-releases/releases.

Follow the Installing KookaBlockly guide in the next section to install KookaBlockly.

1.1.3 Programming With KookaBlockly

Using KookaBlockly is straightforward and enjoyable.

Users can drag and drop visual code blocks into the workspace, where they can be seamlessly interlocked or snapped
together using sockets.

These sockets represent fundamental code concepts, including program controls (activation, termination, loops, and
decisions), actions, and result computations (variables, values, mathematical and logical expressions).

The intuitive visual process empowers users to apply programming concepts and principles when designing scripts or
programs, eliminating the need to worry about the syntax and semantics of MicroPython.

With KookaBlockly, programming becomes an enjoyable and accessible endeavour.

1.1.4 AustSTEM Learning Hub

AustSTEM has assembled a collection of resources on its Learning Hub at https://learn.auststem.com.au. These re-
sources complement the material in this manual with examples, lesson plans, descriptions of equipment and of their
application.

1.2 Installing KookaBlockly

KookaBlockly is part of the KookaSuite set of code development and editing tools for the Kookaberry microcomputer
and other microcomputer boards that can use the Kooka firmware.

The tools that are in KookaSuite are:

KookaBlockly
a powerful standalone visual editor designed for creating program scripts.

KookaIDE
a text editor for creating and editing MicroPython program scripts and directly interacting with the Kookaberry
control console.

IDE is short for Integrated Development Environment.

KookaTW
A virtual Kookaberry user interface that replicates the physical user interface on a Kookaberry and provides a
user interface for compatible microprocessor boards that do not have a physical user interface.

TW originated as Teacher’s Window, but also stands for TWin, or in some cases Training Window.

1.2. Installing KookaBlockly 5

https://github.com/kookaberry/kooka-releases/releases
https://learn.auststem.com.au

KookaBlockly Reference Guide, Release v1.10.0

1.2.1 Downloading KookaSuite

The latest version of KookaBlockly can be conveniently downloaded from the Kookaberry GitHub repository at
https://github.com/kookaberry/kooka-releases/releases.

Choose the latest version compatible with your personal computer. KookaSuite versions available are for:

• Microsoft Windows V10 and later

• Apple MacOS V10.15 and later

• Raspberry Pi OS (32 bit Debian v12 [bookworm])

Click on the hyperlink for the appropriate version of KookaSuite and download it to a folder (default is in the Down-
loads folder) on your personal computer.

1.2.2 Installing KookaSuite on Microsoft Windows

1. Double-click on the downloaded KookaSuite-<version>-Win64.msi file to launch the Windows Installer.
The display in Fig. 1.2 will then appear.

Fig. 1.2: Click on Next to proceed.

1. KookaSuite does not (as yet) have an application trust certificate, so Windows Defender will alert you with the
dialogues in Fig. 1.3 and Fig. 1.4.

1. The installer will then show the Kookaberry Licence Agreement. The agreement contains a liability disclaimer,
then a series of open-source licences for the software that is embedded within KookaSuite.

To obtain a printed copy of the licence, press Print.
Please read the licence conditions and if you accept them, click on the acceptance checkbox to place a tick (as
shown in Fig. 1.5) and then click on Next.

4. The dialogue in Fig. 1.6 will then appear showing where on your computer the KookaSuite programs will be
installed.

6 Chapter 1. Part 1 - Working With KookaBlockly

https://github.com/kookaberry/kooka-releases/releases

KookaBlockly Reference Guide, Release v1.10.0

Fig. 1.3: Click on More info to proceed to the next dialogue.

Fig. 1.4: Click on Run Anyway to proceed.

1.2. Installing KookaBlockly 7

KookaBlockly Reference Guide, Release v1.10.0

Fig. 1.5: Click the checkbox to accept the licence, then click on Next to proceed.

Usually the default location of C:\Program Files\Kookaberry\KookaSuite is fine, but you or your system
administrator may wish to put them elsewhere. If so, click on Change and select the prefered location using the
file explorer dialogue which will open.

5. The next dialogue, shown in Fig. 1.7, specifies the folder in which KookaSuite will store files.

The default location is C:\Users\Public\Kookaberry Scripts\ which all users share on a Windows PC.
If another location (for example) C:\Users\<your account>\Kookaberry Scripts\ which is unique and
private to <your account>) is desired, click on Change and select the preferred location using the file explorer
dialogue which will open.

6. A dialogue then appears, shown in Fig. 1.8, that provides the opportunity to select which elements if not all of
KookaSuite are to be installed. It is recommended that all elements be installed for a fully functional Kooka-
Suite.

7. A dialogue with a progress bar that tracks the installation progress will appear as in Fig. 1.9.

There may be a Windows alert asking for permission to proceed. Accept the installation by clicking Yes.
The progress bar will then continue and when it reaches completion the Completed dialogue will appear.

1.2.3 Installing KookaSuite on MacOS

1. Double-click on the downloaded KookaSuite-<version>-macOS.dmg file to open it. You will see it contains
the three KookaSuite apps, as in Fig. 1.10.

2. Create a suitably named folder in the Macintosh Applications\ folder and drag the KookaSuite apps into it,
as shown in Fig. 1.11.

KookaBlockly will then be available to launch (as will KookaIDE and KookTW) from the Applications icon
in the Macintosh taskbar and by any other regular methods for starting Macintosh applications.

If a KookaSuite tool has not been run on the Macintosh before, a security warning notice may come up. The procedure
for running any KookaSuite tool for the first time is given by the Apple Support website here: https://support.apple.

8 Chapter 1. Part 1 - Working With KookaBlockly

https://support.apple.com/en-us/HT202491
https://support.apple.com/en-us/HT202491

KookaBlockly Reference Guide, Release v1.10.0

Fig. 1.6: Installation location dialogue. Click on Next to proceed.

Fig. 1.7: Scripts location dialogue. Click Next to proceed.

1.2. Installing KookaBlockly 9

https://support.apple.com/en-us/HT202491
https://support.apple.com/en-us/HT202491

KookaBlockly Reference Guide, Release v1.10.0

Fig. 1.8: Press Install to proceed with the KookaSuite installation.

Fig. 1.9: Click on Finish to exit the Windows Installer.

10 Chapter 1. Part 1 - Working With KookaBlockly

https://support.apple.com/en-us/HT202491
https://support.apple.com/en-us/HT202491

KookaBlockly Reference Guide, Release v1.10.0

Fig. 1.10: The contents of the MacOS KookaSuite download package.

Fig. 1.11: KookaSuite apps copied to the Applications folder.

1.2. Installing KookaBlockly 11

https://support.apple.com/en-us/HT202491
https://support.apple.com/en-us/HT202491

KookaBlockly Reference Guide, Release v1.10.0

com/en-us/HT202491. After that the Macintosh will trust the software and allow it to run.

1.2.4 Installing KookaSuite on Raspberry Pi

KookaSuite has been compiled to run on the 32 bit version of the Raspberry Pi OS (Operating System), which is based
on Debian Linux v12, known as “bookworm”. KookaSuite will not run on earlier versions of the Raspberry Pi OS,
nor on the 64 bit version (unless you install dual architecture libraries, which can be complicated).

If your Raspberry Pi OS is an earlier version, you will need to update it. First back-up your Raspberry Pi on some
removable media e.g. a USB memory stick. The easiest way is to flash the current 32 bit version onto a new SD-
card following the instructions here: https://www.raspberrypi.com/software/ This will set up a new Raspberry Pi OS
without any of your files on it. Retain the old Raspberry Pi SD card in case you need to retrieve some information from
the older operating system. Then restore your data backup data into the home folder of the new Raspberry Pi OS.

Then proceed to download the KookaSuite-<version>-RPi.zip file from the the Kookaberry GitHub repository
at https://github.com/kookaberry/kooka-releases/releases.

Unzip the downloaded file into the home folder. This will create a folder containing the three executables Kook-
aBlockly, KookaIDE and KookaTW as shown in Fig. 1.12.

Fig. 1.12: KookaSuite apps copied to a folder in the Raspberry Pi’s home folder.

Using the terminal program, install the needed Qt5 modules:

12 Chapter 1. Part 1 - Working With KookaBlockly

https://support.apple.com/en-us/HT202491
https://support.apple.com/en-us/HT202491
https://www.raspberrypi.com/software/
https://github.com/kookaberry/kooka-releases/releases

KookaBlockly Reference Guide, Release v1.10.0

Listing 1.1: Installing QT5

sudo apt install libqt5webkit5
sudo apt install libqt5websockets5
sudo apt install libqt5serialport5

If desired, create Raspberry Pi menu items under Programming using the Preferences/Main Menu Editor as
shown in Fig. 1.13 and Fig. 1.14.

Fig. 1.13: Configuring KookaSuite apps using the Raspberry Pi’s menu editor.

Fig. 1.14: The KookaSuite apps as they appear in the Raspberry Pi’s menu.

1.2. Installing KookaBlockly 13

KookaBlockly Reference Guide, Release v1.10.0

1.2.5 Script Folders

During installation or first running of KookaSuite, the Kookaberry Scripts\ folder will be created in the location
specified during the installation process or on MacOS and Raspbian in the user’s home folder or documents folder.

If the Kookaberry Scripts\ folder already existed it will not be altered. See Fig. 1.15.

Fig. 1.15: The Kookaberry Scripts folder in a fresh KookaSuite installation.

The Kookaberry Scripts\ folder contains two sub-folders:

• KookaBlockly\ where KookaBlockly stores the program scripts created by it.

• KookaIDE\ where KookaIDE stores MicroPython scripts.

It is permissible to create sub-folders within the KookaBlockly\ and KookaIDE\ folders for different projects.

The script selection drop-down boxes in KookaBlockly and KookaIDE will however only scan the first level of sub-
folders for scripts.

1.2.6 KookaBlockly Updates

Occasionally when KookaBlockly updates are released, the forms and functions of some blocks may be changed.

Existing KookaBlockly scripts will retain the forms and functions of blocks as last edited. Updates to the blocks are
not automatically applied to pre-existing scripts.

If the newer block is desired, then the KookaBlockly script must be edited and the block explicitly replaced by the
newer form from the block palette.

Once an older block is removed it can no longer be used as it will no longer be available from the palette of blocks.

1.2.7 Editing KookaBlockly Scripts Using KookaIDE

A KookaBlockly file, designated with the file type suffix .kby.py, contains the MicroPython script that is auto-
matically generated by the KookaBlockly editor as visual blocks are assembled and configured. At the end of the
KookaBlockly file there is a very long comment line which contains the code, in XML (Extended Markup Language)
format, that describes all the blocks, their parameters and their inter-connections.

While it is possible to edit a KookaBlockly file using the KookaIDE editor and to then run it on the Kookaberry,
any changes made will not alter the XML block code. As soon as the KookaBlockly file is again opened by the
KookaBlockly editor, it will regenerate the MicroPython script based on the XML block code, and it will disregard
any changes made to the MicroPython script.

Attempting to edit the XML code directly will likely render the KookaBlockly file unusable by the KookaBlockly
editor, so please do not edit the XML code.

14 Chapter 1. Part 1 - Working With KookaBlockly

KookaBlockly Reference Guide, Release v1.10.0

Important: Only edit KookaBlockly files using the KookaBlockly editor!

1.3 Using the KookaBlockly Application

Launching KookaBlockly on a personal computer will result in the display shown in Fig. 1.16.

Fig. 1.16: This is the KookaBlockly display with the controls labelled.

The application window has numerous controls, as are described below:

1.3.1 Version

The version of KookaBlockly is shown at the top-left of the KookaBlockly window.

Note: The latest version of KookaBlockly can be conveniently downloaded from the Kookaberry GitHub repository
at https://github.com/kookaberry/kooka-releases/releases.

See the section Installing KookaBlockly for instructions.

If a KookaBlockly script has been loaded, the path and name of the file from which the script was loaded is shown
next to the KookaBlockly version.

1.3. Using the KookaBlockly Application 15

https://github.com/kookaberry/kooka-releases/releases

KookaBlockly Reference Guide, Release v1.10.0

1.3.2 Resize / Exit

These controls allow the KookaBlockly window to be minimises or maximised, and the KookBlockly application to
be exited.

If the KookBlockly script has not been saved before attempting to exit KookaBlockly, a prompt dialogue will appear
providing an opportunity to save or not save the current script to a file, as shown in Fig. 1.17.

Fig. 1.17: Prompt dialogue on attempted exit with unsaved script.

Resizing of the window can also be accomplished by clicking on the window edges and dragging to resize.

The appearance and location of these controls varies between Windows, MacOS and Raspbian and conforms to the
conventions used by the user interface of those operating systems.

1.3.3 Workspace

In the centre of the window is the KookaBlockly workspace.

Blocks can be dragged into this space, repositioned, resized and deleted by using the mouse or track-pad or pointing
device.

1.3.4 Blocks Palette

Down the left of the window is a vertically-oriented list of the KookaBlockly palette categories, shown in Fig. 1.18.

Click on any category to reveal the palette of blocks, click on and drag the desired block to the workspace, position it
and release to drop the block in place. The blocks palette will then automatically close.

To close the blocks palette without dragging a block into the workspace, either click on the palette icon used to open
the palette, or press the Esc key.

The block categories and blocks are fully described in the Part 2 - KookaBlockly Function Blocks Reference section.

16 Chapter 1. Part 1 - Working With KookaBlockly

KookaBlockly Reference Guide, Release v1.10.0

Fig. 1.18: The Blocks Palette showing the Block Categories

1.3. Using the KookaBlockly Application 17

KookaBlockly Reference Guide, Release v1.10.0

1.3.5 Script Controls

At the top-left of the window, a set of buttons with which KookaBlockly scripts may be created, loaded, saved, run
and stopped. See Fig. 1.19.

Fig. 1.19: The KookaBlockly Script Control Buttons

The functions of each of the KookaBlockly Script Control buttons is:

New
Empties the workspace to start a new script. If the current script contents have not been saved then a save prompt
is given as shown in Fig. 1.20.

Fig. 1.20: Prompt dialogue on attempting to clear the workspace containing an unsaved script.

Load
The Load button allows the user to select a KookaBlockly program to be loaded into the Workspace, appending
it to the current script. This feature enables the assembling of scripts by combining separate script files.

Move the cursor to this button, press click on the mouse and the dialogue in Fig. 1.21 will be displayed:

Fig. 1.21: KookaBlockly script load file selection dialogue.

18 Chapter 1. Part 1 - Working With KookaBlockly

KookaBlockly Reference Guide, Release v1.10.0

The default directory for Kookaberry scripts within the current user’s account is /Kookaberry Scripts/
KookaBlockly and the user can navigate away from this as desired.

KookaBlockly script files have a type designation of .kby.py.

Selecting a script and pressing the dialogue’s Open button, or alternatively double-clicking on a selected KookaBlockly
script file will place a copy of that script in the KookaBlockly Workspace from where it can be modified, saved and
run on the Kookaberry.

Important: When assembling scripts from a number of files, the name of the last loaded file becomes the default for
saving the script. If the script is intended to be saved into a new or differently-named file then use the Save As button
to give a different name to the file.

Save
Saves the currently named script to the corresponding file.

If the script was loaded from a file, the path and name of the file from which the script was loaded is shown next
to the KookaBlockly version and the script will be save to that file.

If the script has not been previously saved, the Save As procedure is automatically used.

Save As
Saves the current script to a new file within a selected folder.

Move the cursor to this button, press click on the mouse and the file dialogue in Fig. 1.22 will be displayed:

Fig. 1.22: KookaBlockly script save file selection dialogue.

The default directory for Kookaberry scripts within the current user’s account is /Kookaberry Scripts/
KookaBlockly and the user can navigate away from this to another folder as desired.

KookaBlockly script files have a type designation of .kby.py.

Enter the new file’s name and press the dialogue’s Save button will save the current script to the file. If the file already
exists, another dialogue shown in Fig. 1.23 will open asking to confirm whether the file is to be replaced. Press Yes to
overwrite the file, or No to go back and change the intended file name.

Print
Prints the current view of the script in the workspace, which may not be the whole script. Using the Zoom buttons
and Scroll Bars, adjust the view of the script to suit the printout desired.

1.3. Using the KookaBlockly Application 19

KookaBlockly Reference Guide, Release v1.10.0

Fig. 1.23: KookaBlockly existing file name dialogue.

When the Print button is clicked, a Print dialogue (per the operating system convention) appears as in Fig. 1.24.

Choose the print options, which again are specific to the PC operating system and the installed printer, and then
press the Print button to finalise printing options and then printing to the chosen printer.

Print options may include paper size, paper orientation, multi-page layout, printer selection and printer setup.

Fig. 1.24: KookaBlockly script Print dialogue.

Run
Transfers the current script to the tethered Kookaberry and runs the script on the Kookaberry.

Stop
Terminates the script currently running on the tethered Kookaberry.

At Start Up
Gives the option to automatically run a script automatically whenever the Kookaberry is turned on or reset.

20 Chapter 1. Part 1 - Working With KookaBlockly

KookaBlockly Reference Guide, Release v1.10.0

The Kookaberry will look for a script file called main.py in the root folder of its file store whenever it starts up.
If the script is present, it will be run. Using the At Start Up button, a file called main.py is created containing
a small script that causes a designated script in the Kookaberry’s app folder to be run.

For this to work correctly, the script must first be stored on the Kookaberry’s file storage system, in the app
folder.

Fig. 1.25: At Start Up dialogue.

Click on the At Start Up button and a dialogue window, shown in Fig. 1.25, will appear with a drop-down list of the
scripts stored on the Kookaberry as in Fig. 1.26.

Fig. 1.26: At Start Up drop-down list of available scripts.

The first entry will be <none> followed by a list of scripts in the app folder.

Select the desired script and click the OK button.

Fig. 1.27: At Start Up folder selection dialogue.

A folder dialogue window will then open, as in Fig. 1.27, to select where on the Kookaberry a script file called main.py
should be stored. Usually this will be in the root folder of the Kookaberry’s file store. However on occasion you may

1.3. Using the KookaBlockly Application 21

KookaBlockly Reference Guide, Release v1.10.0

want to store the main.py file elsewhere. Select the folder and click on the OK button and the main.py file will be
stored in the folder.

To stop the script from being automatically run, select <none> in the script selection dialogue and overwrite the pre-
viously stored main.py. A main.py file will still exist but without any instructions to start a script.

1.3.6 Inspection Buttons

At the top-right of the window, the Inspection Buttons will open separate windows.

Fig. 1.28: The Inspection Buttons: Show script and Show display

Show display
This button which will open a window, shown in Fig. 1.29, on which the attached Kookaberry is shown in
virtual form. This includes the Kookaberry’s display, LEDs, buttons A to D and reset, and a button to start the
Kookaberry’s internal menu.

The display will mirror the physical display on the Kookaberry.

The LEDs will change colour to mirror illumination of the real LEDs on the Kookaberry.

The buttons can be clicked using a mouse or track-pad on the PC, and will respond in the same way as the physical
buttons on the Kookaberry.

Fig. 1.29: Virtual Kookaberry window

Note: It is also possible to load Kookaberry firmware onto standard Pi Pico microcomputer boards. These boards do
not have the physical Kookaberry display, LEDs or buttons.

In this case the virtual Kookaberry window can be used to view and operate the Kookaberry’s user interface.

1. the “Kookaberry Reset” button replicates the hardware Reset button the Kookaberry

2. the “Kookaberry menu” button replaces the “hold down button B and press and release Reset” on a physical
Kookaberry

3. the three LEDs replicate the three hardware LEDs on the Kookaberry

22 Chapter 1. Part 1 - Working With KookaBlockly

KookaBlockly Reference Guide, Release v1.10.0

4. the four buttons A, B, C and D, replicate the physical buttons on the KookaBerry

Show script
This button opens a window, shown in Fig. 1.30, in which the MicroPython script generated by the loaded
KookaBlockly script is displayed.

The size of the window showing the script can be adjusted by clicking on and dragging the edges of the script
window using the cursor.

The MicroPython is read-only and cannot be edited within this window.

There is a check-box which when ticked will cause the script window to stay visible in front of other windows
on the computer screen.

This window presents a live view of the generated MicroPython script and it is possible to watch the MicroPython
script being dynamically altered as the KookaBlockly script is being edited.

Fig. 1.30: KookaBlockly-generated MicroPython script window

1.3. Using the KookaBlockly Application 23

KookaBlockly Reference Guide, Release v1.10.0

1.3.7 Connection

At the top-centre is the “Serial” drop-down box which shows which serial USB ports are available and which is con-
nected to a tethered Kookaberry. See Fig. 1.31.

Fig. 1.31: The Serial drop-down showing the available and used USB serial connection ports

Plugging in a Kookaberry usually automatically assigns a USB serial port.

If the Kookaberry is not responding, select the Auto-connect option to reset the serial connection to the Kookaberry.

It is also possible to block a Kookaberry connection by selecting Disable from the dropdown-box.

1.3.8 Script Selection

Fig. 1.32: The Script Selection dropdown boxes

Scripts dropdown box
Shown in Fig. 1.32, this drop-down box contains a list of folders in the Kookaberry Scripts/KookaBlockly
folder.

Choose a script
This contains a list of KookaBlockly scripts within the folder selected in the left-hand box.

Together these dropdown-boxes allow the selection and loading of any pre-existing KookBlockly script in the Kook-
aBlockly folder and sub-folders.

If an unsaved KookaBlockly script is in the workspace, a prompt as shown in Fig. 1.33 will appear giving the oppor-
tunity to save the existing script to a file before replacing it with the selected script.

Fig. 1.33: Prompt dialogue on script replacement when an unsaved script is in the workspace.

24 Chapter 1. Part 1 - Working With KookaBlockly

KookaBlockly Reference Guide, Release v1.10.0

1.3.9 Scroll Bars, Centre, Zoom and Trash

At the bottom-right of the window is a set of control icons as shown in Fig. 1.34.

Fig. 1.34: Control icons at the bottom right of the KookaBlockly window

Centre Script
for centering the KookaBlockly script. Clicking on the Centre icon will centre the script in the Workspace and
zoom it to fit the KookaBlockly window.

Zoom Script
for changing the visual size of the KookaBlockly script by zooming in and out.

Click on the + icon to zoom in and visually enlarge the script.

Click on the - icon to zoom out and visually shrink the script.

Trash
for retrieving blocks that were deleted during the current editing session.

Click on the Trash icon to open it and show the blocks that have been deleted in the current editing session.

To retrieve a block from the Trash, click on the block and drag it back into the Workspace.

To close the Trash press the Esc key.

When KookaBlockly is closed the contents of the Trash are deleted.

Scrollbars
there are horizontal and vertical scrollbars for positioning the KookaBlockly workspace within the window.

Click on a scrollbar and drag it up/down or left/right as appropriate to reposition the Workspace in the Kook-
aBlockly window.

1.4 KookaBlockly Conventions

KookaBlockly provides an extensive palette of blocks to assemble into scripts. The blocks palette is on the left of the
display organised into functionally related categories.

Clicking on a category, for example the Control category, reveals the blocks available within that category. To use the
block, click on it and drag it onto the KookaBlockly workspace and release, and/or drag it into position until it snaps
onto an adjacent block. Any block in the workspace can be clicked on and dragged into position.

The blocks palette will close automatically when a block is dragged into the workspace. Otherwise, the palette can be
closed by clicking on the same block palette symbol that was used to open the palette, or by pressing the Esc key on
the keyboard.

1.4. KookaBlockly Conventions 25

KookaBlockly Reference Guide, Release v1.10.0

1.4.1 Block Shapes

KookaBlockly contains three basic block shapes:

1. A C-shaped block directs program flow and contains a sequence of action blocks. The C-shaped block may be a
loop, or may be a sequence of blocks that are run conditionally subject to one or more logical tests.

2. An action or “do” block which performs an operation. The block has an indent in the top border and a matching
protrusion on the bottom border. These blocks click together like jigsaw pieces and may be placed in a vertical
column and within a C-shaped block.

3. A value block which has a jigsaw tab on the left-hand edge. These blocks evaluate an expression and assign an
output value to the blocks to which they are connected. Some value blocks have a matching receptacle on the
right-hand edge which accepts other value blocks.

1.4.2 Block Configuration

Some blocks have configuration options denoted by a cog symbol. Clicking on the cog symbol presents options that
may be used to configure the block.

26 Chapter 1. Part 1 - Working With KookaBlockly

KookaBlockly Reference Guide, Release v1.10.0

1.4.3 Right-clicking

Right-clicking on a block also presents a set of option as below. These include: duplicate the current block; add
a comment; collapse the block into a compact presentation or expand a collapsed block; disable or enable a block;
remove the block from the program; or display some Help text about the block (if the Help text has been provided).

Duplicate
Click on Duplicate to create a duplicate of the block and any connected sub-blocks in the workspace.

Sub-blocks for example are all the blocks nested within a control block, or any value blocks connected to an
action block.

Add Comment
Click on Add Comment and a circle with a question mark will appear in the block.

Click on the question mark and an area pane is provided for a user to enter in a comment.

This comment will be included in the MicroPython script generated by KookaBlockly.

Comments are very useful for describing parts or portions of the script for later reference by subsequent users of
the script.

Collapse Block
Click on Collapse Block to truncate the block.

This is useful when a large number of blocks are in the workspace and the user wants to make a block smaller so
that it is easier to see other blocks.

The user can restore the collapsed block at any time.

Disable Block
Click on Disable Block to make the block turn white and it will not be included in the script.

This is similar to “commenting out” lines of scripts when writing MicroPython code.

Delete Block
Choose a block by clicking on it.

Right click on the block and then choose Delete Block to delete the block from the script or press the Delete key
on the keyboard.

Blocks can also be deleted by clicking on a block, separating it from the graphical script and dragging it into the
Trash.

Clicking on the Trash icon, which is at the bottom-right of the Workspace, opens the lid and displays the deleted
items.

Any deleted item may be dragged back into the workspace to become part of the program.

Clicking on a blank area of the workspace closes the Trash.

1.4. KookaBlockly Conventions 27

KookaBlockly Reference Guide, Release v1.10.0

1.4.4 Text Delimiters

Many blocks contain text fields. In KookaBlockly, text is enclosed by double-quotes ", and these are automatically
applied.

However there are some exceptions, particularly in the Advanced block which permits any valid MicroPython statement
to be entered. Here it is important to use the double-quotes " and not single quotes ' to delimit text, as single-quotes are
used in KookaBlockly’s XML block code and will be misinterpreted rendering the saved KookaBlockly file unusable
(without manually correcting the XML block code).

1.4.5 Deleting Blocks

Any block in the workspace, including any attached input blocks, can be removed from the script by:

1. dragging the block to the Trash at the bottom-right of the workspace. The Trash icon will show an open lid when
the dragged block is correctly positioned.

2. or by clicking on the block to highlight it (shows a yellow outline), then pressing the delete key (or backspace
key on Windows).

Blocks removed can be retrieved from the Trash by clicking on the Trash icon. A grey box will appear containing all
of the deleted blocks. To retrieve a block, drag it back into the workspace. The Trash will then close automatically.

To close the Trash without dragging a block into the workspace, press on the Esc key.

28 Chapter 1. Part 1 - Working With KookaBlockly

CHAPTER

TWO

PART 2 - KOOKABLOCKLY FUNCTION BLOCKS REFERENCE

In this Part 2 of the KookaBlockly Reference Guide, each of the groups of function blocks available on the Kook-
aBlockly palette are described in the following sections.

2.1 Control

The Control blocks in Fig. 2.1 direct program flow or provide time-related functionality.

Fig. 2.1: The palette of KookaBlockly Control blocks

Each block is described in turn below.

29

KookaBlockly Reference Guide, Release v1.10.0

2.1.1 On Start

The “on start” block is intended to contain other action blocks that will run first and only once when the KookaBlockly
script starts.

Typically the blocks contained are for the initialisation of the display, variables, sensors, and actuators.

2.1.2 Scheduled Loop

This block is a loop that repeatedly runs the blocks nested inside at the time interval specified in the numeric box.

The loop will continue forever at the defined period unless the program is externally stopped.

The time specification is a number in decimal seconds, for example: 1 is 1 second, and 0.001 is 1 millisecond.

2.1.3 Every Loop

This block runs the blocks nested inside in a repeated loop.

The loop will run forever unless externally stopped by exiting the script, or resetting the Kookaberry or removing
power from the Kookaberry.

Another name for this block is the Repeat Forever loop.

2.1.4 Exit Program

This block directs the running program to exit.

30 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

KookaBlockly Reference Guide, Release v1.10.0

2.1.5 Sleep

This block causes the program to wait / pause for the specified time before continuing to the next block.

The number in the box specifies the duration of sleep in decimal seconds.

2.1.6 Time (s)

This block returns a value in whole seconds since the Kookaberry’s epoch time (00:00:00 on 1st January 2000).

By subtracting successive values given by this block, the elapsed interval in seconds between the samples may be
calculated which is useful for timing functions.

Note: epoch time is the point from which time is measured. This point differs for different operating systems. For
MicroPython on micro-computers, the epoch time is 2000-01-01 00:00:00.

epoch time should not be confused with the default time set on the Kookaberry’s internal Real Time Clock (RTC),
which is 2015-01-01 00:00:00. Using KookaBlockly, however, the Kookaberry’s internal RTC will be synchronised
with the time on the PC it is tethered to using its USB connection.

2.1.7 Time (ms)

This block returns a value in milliseconds since the Kookaberry’s epoch time (00:00:00 on 1st January 2000).

By subtracting successive values given by this block, the elapsed interval in milliseconds between the samples may be
calculated which is useful for high-resolution timing functions.

2.2 Clock

Clicking on the Clock category in the KookaSuite palette reveals the available blocks, as in Fig. 2.2. Click and drag
any of the required blocks to the KookaBlockly workspace and connect with other blocks to build a script that can use
and/or set the time.

The blocks in the Clock category provide the functions to read and set the electronic real-time-clocks (RTCs).
The Kookaberry has an internal RTC which defaults to a time of 00:00:00 on 1 January 2015 when the Kookaberry
is turned on.

The Kookaberry does not retain the time without external power as it has no internal battery to keep the internal clock
running.

When the Kookaberry is connected to KookaBlockly, its internal RTC is updated to the time on the hosting computer.

2.2. Clock 31

KookaBlockly Reference Guide, Release v1.10.0

Fig. 2.2: The palette of KookaBlockly Clock blocks.

An external RTC, connected as an accessory to the Kookaberry, usually has a battery and therefore maintains the time
that has been previously set on it. This provides a convenient way for the Kookaberry to obtain the correct time when
it is not tethered to KookaBlockly (or KookaIDE or KookaTW). The external RTC is connected to the Kookaberry
using two Pins specified as SCL and SDA on the relevant blocks.

Each of the Clock blocks is described in the following sections.

2.2.1 Internal Clock

Get Clock – Simple Time

Reads the Kookaberry’s internal Real Time Clock (RTC) and returns a date or time in the chosen format selected
from the drop-down menu on the block.

The value returned is a character string.

32 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

KookaBlockly Reference Guide, Release v1.10.0

Get Clock - Extended Time

Reads the Kookaberry’s internal Real Time Clock (RTC) and returns the date and time as a character string comprising
two parts per the selected formats and separated by a string of characters that can be specified by the user (the default
separator is the minus character -).

In Fig. 2.3 is a KookaBlockly example script demonstrating a loop which updates the Kookaberry’s display every
second with the current time and date.

Fig. 2.3: A KookaBlockly Script that shows the current time and date on the Kookaberry display.

Fig. 2.4: The Kookaberry display resulting from the example KookaBlockly Script in Fig. 2.3.

Set Clock from Character String

This block sets the Kookaberry’s internal Real Time Clock (RTC) to the time specified by a character string in the
format “YYYY/MM/YY HH:MM:SS”.

This is useful for updating the internal RTC with a fixed time or where the Kookaberry internal clock has not been
automatically synchronised using KookaBlockly.

2.2. Clock 33

KookaBlockly Reference Guide, Release v1.10.0

2.2.2 External Clock

External Clock’s Pins Connections

The external clock is connected to the Kookaberry by two of the five connectors on the back, P1 through to P5, with
connector P3 having two possible connection points: P3A and P3B. (see the Pins category description).

The external clock block has two input Pins drop-down selection blocks by which the input Pin can be selected.

It is possible to replace the Pins dropdown selection block with a String block. This is useful when using Pins other
than those exposed on the rear of the Kookaberry, or when other microprocessor boards that are compatible with
Kookaberry firmware are being used. In those cases type in the Pin’s identifier into the String block.

Get External Clock - Simple Time

Reads the Kookaberry’s external Real Time Clock (RTC) and returns a date or time in the chosen format selected
from the drop-down menu on the block.

The value returned is a character string.

The external RTC is connected to the Kookaberry’s connector ports as selected from the SCL and SDA dropdown
lists. The default setting of SCL as P3A and SDA as P3B is usually correct, meaning the external RTC is connected to
the Kookaberry using the 4-pin P3 port.

Get External Clock – Extended Time

Reads the Kookaberry’s external Real Time Clock (RTC) and returns the date and time as a character string comprising
two parts per the selected formats and separated by a string of characters that can be specified by the user (the default
separator is the minus character -).

The external RTC is connected to the Kookaberry’s connector ports as selected from the SCL and SDA dropdown
lists. The default setting of SCL as P3A and SDA as P3B is usually correct, meaning the external RTC is connected to
the Kookaberry using the 4-pin P3 port.

34 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

KookaBlockly Reference Guide, Release v1.10.0

2.2.3 Set Internal Clock from External Clock

Sets the Kookaberry’s internal Real Time Clock (RTC) by copying the current time from the external RTC.

The external RTC is connected to the Kookaberry’s connector ports as selected from the SCL and SDA dropdown
lists. The default setting of SCL as P3A and SDA as P3B is usually correct, meaning the external RTC is connected to
the Kookaberry using the 4-pin P3 port.

2.2.4 Set External Clock from Internal Clock

Sets the Kookaberry’s external Real Time Clock (RTC) by copying the current time from the internal RTC.

This is useful for updating the external RTC with the correct time when the Kookaberry is tethered to KookaBlockly.

The external RTC is connected to the Kookaberry’s connector ports as selected from the SCL and SDA dropdown
lists. The default setting of SCL as P3A and SDA as P3B is usually correct, meaning the external RTC is connected to
the Kookaberry using the 4-pin P3 port.

2.2.5 Set External Clock from Character String

Sets the Kookaberry’s external Real Time Clock (RTC) to the time specified by a character string in the format
“YYYY/MM/YY HH:MM:SS”.

This is useful for updating the external RTC with a fixed time or where the Kookaberry’s internal clock has not been
automatically synchronised using KookaBlockly.

The external RTC is connected to the Kookaberry’s connector ports as selected from the SCL and SDA dropdown
lists. The default setting of SCL as P3A and SDA as P3B is usually correct, meaning the external RTC is connected to
the Kookaberry using the 4-pin P3 port.

2.2. Clock 35

KookaBlockly Reference Guide, Release v1.10.0

2.3 Display

Display blocks in Fig. 2.5 control what appears on the Kookaberry’s display.

Fig. 2.5: The palette of KookaBlockly Display blocks

Each block is described in turn below.

2.3.1 Kookaberry Display

The Kookaberry’s display is a 128 pixel wide x 64 pixel high cyan OLED (Organic Light Emitting Diode) display.

The x direction is the width of the display having a range specified as 0 to 127 pixels and the y direction is the height
of the display having a range specified as 0 to 63 pixels.

As shown in Fig. 2.6, the (x,y) location (0,0) is at the top left-hand corner of the display. The bottom right of the display
has a location reference (x,y) of (127,63).

The display is driven from an internal memory array known as a Framebuffer, into which the software writes the pixel
data prior to its contents being transferred to the physical Kookaberry display. This reduces any display flicker.

The method of writing to a display is generally:

1. Clear the Framebuffer

2. Write text and/or graphics to the Framebuffer in one or more parts to build up the entirety of the Display’s
contents, and then

36 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

KookaBlockly Reference Guide, Release v1.10.0

Fig. 2.6: The Display coordinates

3. Show the display buffer on the display.

The following blocks provide the functionality to operate the Kookaberry’s Display.

2.3.2 Text coordinates

The coordinates at which text is positioned on the Display differs from the graphical elements (pixel, line,
rectangle, and image).

• Graphical elements are positioned at their top-left corner.

• Text is positioned at its bottom-left corner.

To accurately position text, one can use trial-and-error, or make a calculation that depends on the text font size (the
default being mono8x8).

• To position a pixel at the top-left of the Display (0,0) simply specify x=``0`` and y=``0`` in the Display Pixel
block.

• To position text at the top-left of the Display, specify (0,7) being x=``0`` and y=``7`` (the mono8x8 font height)
in the Display Print block.

2.3.3 Display Clear

This block clears the display’s frame buffer. The physical display will not be updated until a Display Show is used.

2.3. Display 37

KookaBlockly Reference Guide, Release v1.10.0

2.3.4 Display Show

This block transfers the display’s frame buffer to the Kookaberry’s physical display.

KookaBlockly automatically inserts the equivalent Display Show code towards the end of the generated MicroPython
script. However it may be desirable to refresh the physical display earlier in the KookaBlockly script, such as at the
end of a loop that updates the display. Use this Display Show block in such circumstances as otherwise the display
will not update until the end of the script.

2.3.5 Display Set Font

This block sets the character font to that selected from the drop down box.

The display fonts available for selection are from smallest to largest:

• mono5x5 - each text character is 5 pixels wide by 5 pixels tall

• mono6x7,- 6 pixels wide by 7 pixels tall

• mono6x8 - 6 pixels wide by 8 pixels tall

• mono8x8 - 8 pixels wide by 8 pixels tall (the default font)

• mono8x13 - 8 pixels wide by 13 pixels tall, and

• sans12.- 12 pixels wide by 12 pixels tall

The selected font will be applied from the point of selection.

A display using several fonts sizes may be constructed by using the Display Set Font block as the display Framebuffer
is constructed by the KookaBlockly script.

2.3.6 Display Print

This block prints the editable text in the input value block to the Kookaberry display at position x=``0`` on a new line.
The current line is set to the top of the screen immediately after the display is cleared.

If the line is longer than the display’s width, the line is wrapped onto successive lines of the display. The current display
line is increased by each successive Display Print until the bottom of the display is reached.

Thereafter each successive Display Print will scroll the display upwards by one line and the current line is shown at
the bottom of the display.

38 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

KookaBlockly Reference Guide, Release v1.10.0

2.3.7 Display Print-and

This block displays the editable text or value in the attached input value block on the current line of the display, followed
by the output of any value block.

Fig. 2.7 shows an example to display the time:

Fig. 2.7: Display Print-and example script

This example results in a display that looks like Fig. 2.8 and is updated every second.

Fig. 2.8: Display Print-and example display

By using “Display Clear” the displayed text stays at the top of the screen instead of scrolling down the display.

2.3.8 Display Pixel

This block displays a pixel at the x and y locations with the specified colour on the display. The values of x, y and
colour are the outputs of any value block.

2.3. Display 39

KookaBlockly Reference Guide, Release v1.10.0

If the values of x or y are outside of the display dimensions then the pixel will not be visible.

The values for colour should be either 0 or 1, where 0 is pixel off (black) and 1 is pixel on (cyan).

2.3.9 Display Line

This block draws a line on the display starting from the location given by the values x1, y1 to the location given by the
values x2,y2.

The value for colour should be either 0 or 1, where 0 is pixel off (black) and 1 is pixel on (cyan).

2.3.10 Display Rectangle

This block displays a rectangle starting at location given by the values x, y with a width and height given by the results
of the value blocks attached to those parameters.

The value for colour should be either 0 or 1, where 0 is pixel off (black) and 1 is pixel on (cyan).

The fill? box when ticked fills the rectangle with pixels of the given colour.

The reverse? box specifies the orientation of the rectangle with respect to the x and y coordinates:

• if reverse? is not ticked, x and y specify the location of the top-left of the rectangle

• if reverse? is ticked, x and y specify the location of the bottom-right of the rectangle

The example script in Fig. 2.9 displays two rectangles of equal origin and dimensions, with one of them having the
reverse? box ticked. The resulting display in Fig. 2.10 shows two rectangles, in normal and reverse orientations about
the same x and y origin.

40 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

KookaBlockly Reference Guide, Release v1.10.0

Fig. 2.9: Example showing the effect of the reverse? box on the Display Rectangle block

Fig. 2.10: The resulting display showing the effect of the reverse? box on the Display Rectangle block

2.3. Display 41

KookaBlockly Reference Guide, Release v1.10.0

2.3.11 Display Text

This block enables the display of the attached output of the attached value block (ie “Hello”) at the location specified
by the value blocks at x and y on the display, with the colour being the value block output of 0 or 1.

Note: The (x, y) coordinate is where the bottom left corner of the display text is positioned.

2.3.12 Display Image

This block allows for the creation of an 8 x 8 pixel array positioned on the Kookaberry display at the coordinates of x
and y.

The transparent? box if ticked will not extinguish any pixels that were already on, thereby giving an impression of
transparency.

By manipulating the values of x and y using value blocks, the pixel array can be made to move around the screen.

Larger pixel arrays can be created by using multiple Display Image blocks with adjacent coordinates (by incrementing
x and y in multiples of 8).

42 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

KookaBlockly Reference Guide, Release v1.10.0

2.4 Buttons

Button blocks are used to specify the actions to be taken when a specific button is pressed. See Fig. 2.11.

Fig. 2.11: The palette of KookaBlockly Buttons blocks

The Kookaberry has four buttons beneath the display labelled A, B, C and D.

These buttons are coloured A red, B green, C blue, and D yellow.

Fig. 2.12: Kookaberry - front view showing Display, LEDs and Buttons

Button functions are also available on the virtual Kookaberry which is shown when KookaBlockly’s Show display
button is clicked.

Each block in the Buttons category is described in turn below.

2.4. Buttons 43

KookaBlockly Reference Guide, Release v1.10.0

Fig. 2.13: Virtual Kookaberry

2.4.1 When Button Was Pressed

This is a control loop that performs the actions contained within it whenever the selected button was pressed.

The button options are A, B, C, or D.

was pressed means that the actions within the loop will be performed only once after the selected button press.

2.4.2 When Button Is Pressed

This is a control loop that performs the actions contained within it as long as the selected button is pressed.

The button options are A, B, C, or D.

is pressed means that the actions will be performed repeatedly as long as the selected button is being pressed.

44 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

KookaBlockly Reference Guide, Release v1.10.0

2.4.3 Button was pressed

This is a value block whose result is True (= 1) whenever the selected button was pressed.

The button options are A, B, C, or D.

After this value block is used its output reverts to False (= 0) until the next time the button was pressed.

2.4.4 Button is pressed

This is a value block whose result is True (= 1) as long as the selected button is being pressed.

The button options are A, B, C, or D.

Th output of this value block reverts to False (= 0) when the button is not being pressed.

2.4.5 Button to Exit Program

This is a combination of two blocks: the button was pressed control loop, as described above, and the exit program
action.

The result of using this combination is whenever the button selected was pressed the currently running program will
finish.

2.5 LEDs

The LEDs category, shown in Fig. 2.14, supports the three LED’s that are beneath the display on the Kookaberry.

These LEDs are coloured red, orange and green.

In addition, support is provided for NeoPixel RGB LEDs.
Each block is described in turn below.

2.5. LEDs 45

KookaBlockly Reference Guide, Release v1.10.0

Fig. 2.14: The palette of KookaBlockly LED blocks

2.5.1 Turn ON LED

This block turns the LED, selected from the drop-down box, ON.

2.5.2 Turn OFF LED

This block turns the LED, selected from the drop-down box, OFF.

2.5.3 Toggle LED

This block toggles the LED selected in the drop-down box.

Toggle means to change the state of the LED from OFF to ON, or from ON to OFF, depending on the LED’s state.

46 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

KookaBlockly Reference Guide, Release v1.10.0

2.5.4 Set NeoPixel

This block supports NeoPixel arrays connected to one of the connections selected in the drop- down box.

Neopixels are multicolour LEDs with Red, Green and Blue LEDs in every individual Neopixel. The apparent colour
of a Neopixel is the result of mixing the Red Green and Blue colours, in the same way that a television screen produces
colours.

Neopixels come as single units or in chains of multiple Neopixels.

The following are the controls that can be set or manipulated on this block:

Pin
The Kookaberry has five connectors on the back, P1 through to P5, with connector P3 having two possible
connection points: P3A and P3B. (see the Pins category description).

It is possible to replace the Pins dropdown selection block with a String block. This is useful when using Pins
other than those exposed on the rear of the Kookaberry, or when other microprocessor boards that are compatible
with Kookaberry firmware are being used. In those cases type in the Pin’s identifier into the String block.

pixel
This is an integer commencing at 0 which specifies which pixel in the array will be set.

Important: The Kookaberry can only supply a limited amount of current power to a NeoPixel array. It is recom-
mended to use no more than 8 NeoPixels, and also to limit the brightness of each to no more than 50 when using more
than 4 NeoPixels.

If more NeoPixels and/or brighter illumination is required, then a special power adapter between the Kookaberry and
the NeoPixel array is recommended.

RGB values
Each of the R (red), G (green) and B (blue) values can be set with integers in the range 0 to 100 inclusive.

By varying the ratio of RGB values set, a wide range of colours can be achieved, as shown in Fig. 2.15.

Learn more about using NeoPixels here: https://learn.auststem.com.au/peripheral/rgb-led/

2.6 Pins

The Pins category, shown in Fig. 2.16, provides the means to control what the Pins do.

Pins are electrical connectors on the Kookaberry.

The Kookaberry circuit board has five plugs on the rear numbered P1 to P5.

P3 has four electrical pins and the rest have 3 pins.

2.6. Pins 47

https://learn.auststem.com.au/peripheral/rgb-led/

KookaBlockly Reference Guide, Release v1.10.0

Fig. 2.15: RGB Primary Colour Combinations

Fig. 2.16: The palette of KookaBlockly Pins blocks

48 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

KookaBlockly Reference Guide, Release v1.10.0

On each connector two of the pins are used for positive and negative power connections. The remaining pin(s) have
multiple uses as digital or analogue inputs or outputs.

In some of the Pins blocks it is possible to replace the drop-down selection block with a String block. This is useful
when using Pins other than those exposed on the rear of the Kookaberry, or when other microprocessor boards that
are compatible with Kookaberry firmware are being used. In those cases type in the Pin’s identifier into the String
block, as shown in Fig. 2.17.

Fig. 2.17: Using a String value block instead of a Pins drop-down selection.

There are break-out (expander) circuit boards for the Kookaberry and the Pi Pico that make more of the GPIO Pins
available for connection and therefore practical use within KookaBlockly scripts.

2.6.1 Pin Turn ON

The Pin Turn ON block causes the selected pin to behave as a digital output and to be turned on with an output voltage
of +3.3 volts DC.

2.6.2 Pin Turn OFF

The Pin OFF block causes the selected pin to behave as a digital output and to be turned off with an output voltage of
0 volts DC.

2.6. Pins 49

KookaBlockly Reference Guide, Release v1.10.0

2.6.3 Pin Toggle

The Pin Toggle block causes the selected pin to behave as a digital output and to change state from OFF to ON, or from
ON to OFF, depending on its existing state.

OFF sets the Pin to 0 volts DC, and ON sets the Pin to +3.3 volts DC.

2.6.4 Set Pin to Digital Value

The Pin Set Pin Digital Value block causes the selected pin to be set to according to the integer value of the input block.

If the input value is 0, the output of the Pin will be set to OFF which is 0 volts DC.

If the input value is not 0, typically 1 or greater, then the output of the Pin will be set to 1 which is +3.3 volts DC.

2.6.5 Get Pin Digital Value

This value block designates the selected pin as a digital input and returns the digital value of the input as either 0 if the
input voltage is close to 0 volts DC, or 1 if the input voltage is closer to +3.3 volts DC.

Important: The allowable Pin input voltage range for the Kookaberry is 0 volts to +3.3 volts DC. Applying voltages
outside that range may irreparably damage the Kookaberry.

50 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

KookaBlockly Reference Guide, Release v1.10.0

2.6.6 Get Pin Voltage

This value block designates the selected pin as an analogue input and returns a floating point value of the input in volts
DC.

Important: The allowable Pin input voltage range for the Kookaberry is 0 volts to +3.3 volts DC. Applying voltages
outside that range may irreparably damage the Kookaberry.

2.6.7 Get Pin Voltage as Percentage of Maximum

This value block designates the selected pin as an analogue input and returns an integer percentage value of the allowable
Kookaberry input voltage range.

Applying 0 volts DC to the input Pin will resturn a value of 0.

Applying +3.3 volts DC to the input Pin will resturn a value of 100.

Important: The allowable Pin input voltage range for the Kookaberry is 0 volts to +3.3 volts DC. Applying voltages
outside that range may irreparably damage the Kookaberry.

2.6.8 Set Pin to Voltage

Where available on the Kookaberry the Set Pin to Voltage block causes the selected pin to behave as an analogue
output and to be set to the voltage specified by the input block.

Note: Set Pin to Voltage is not available on Kookaberry using the Raspberry Pi Pico RP2040 microprocessor.

2.6. Pins 51

KookaBlockly Reference Guide, Release v1.10.0

2.6.9 Set Pin to Percentage of Maximum

Where available on the Kookaberry the Set Pin to Percentage of Maximum block causes the selected pin to behave as
an analogue output and to be set to the percentage of maximum voltage specified by the input block.

The output voltage will rise from 0 volts DC to +3.3 volts DC linearly with the input block rising from 0 to 100.

Note: Set Pin to Percentage of Maximum is not available on Kookaberry using the Raspberry Pi Pico RP2040
microprocessor.

2.6.10 Pin – Pulse Width Modulation (PWM)

Pulse Width Modulation (PWM) oscillates the selected Pin as a digital output between 0 (0 volts) and 1 (+3.3 volts
DC) at a given frequency and duty cycle as specified in the input blocks.

The duty cycle is the proportion of each oscillation in which the output state is set to 1. A duty cycle of 50 means that
the oscillation is 0 for 50% of the time and 1 for the remaining 50%.

The frequency is the number of times the output cycles per second. Frequency can be any positive floating point value

Both frequency and duty can be derived from other value blocks or specified directly.

PWM is used to apply speed control to DC motors by varying the duty cycle from 0% (motor is stopped) to 100%
(motor at full speed). Additional circuitry is required to deliver the electrical power that a motor requires.

PWM can also be used to play tones through a loudspeaker by varying the frequency according to the pitch required.
A frequency of 440Hz corresponds to the musical note of middle A on a piano, for example. Duty cycle is usually set
to 50% but other interesting harmonics may be produced by varying the duty cycle over a limited range around 50%.
Additional circuitry is also required to successfully drive a loudspeaker.

See also https://en.wikipedia.org/wiki/Pulse-width_modulation

Important: Please note that motors and loudspeakers should not be directly plugged into a Kookaberry connector.
These devices require special electronics to supply more power.

Plugging in motors or loud speakers without the necessary driving electronics may irreparably damage the Kookaberry.

52 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

https://en.wikipedia.org/wiki/Pulse-width_modulation

KookaBlockly Reference Guide, Release v1.10.0

2.7 Sensors

The Sensors category provides blocks that enable the use of these sensors, as shown in Fig. 2.18.

Fig. 2.18: The palette of KookaBlockly Sensor blocks

The Kookaberry contains two on-board sensors, being a 3-axis accelerometer and a 3-axis magnetometer.

A large variety of external sensors may also be connected to the Kookaberry via its Pin connectors.

KookaBlockly supports many external sensors as are listed under the External Sensors section. These encompass
measuring temperature, humidity, barometric pressure, soil moisture, light, electrical power, voltage and current.

2.7.1 Internal Sensors

Get Accelerometer (raw)

The Kookaberry contains an internal 3-axis accelerometer.

The accelerometer block provides the acceleration value of the selected axis (one of the X, Y and Z axes in the sensor’s
frame of reference), or the magnitude of the vector sum of all the axes. The X, Y and Z axes are selected using the
drop-down list on the right of the block. The values are in metres per second squared.

The Kookaberry’s internal accelerometer is oriented so that the X axis is along the horizontal dimension of the display,
the Y axis is aligned with the vertical dimension of the display, and the Z axis is perpendicular to the Kookaberry’s
circuit board.

A typical value for acceleration is due to the earth’s gravity, being 9.81 m/sec^2. This will vary slightly with geographic
latitude and height as distances from the earth’s centre of mass vary.

2.7. Sensors 53

KookaBlockly Reference Guide, Release v1.10.0

Note: The vector sum of all acceleration axes is the square root of the sum of the squares of the three axes. That is
sqrt(x^2 + y^2 + z^2).

See also See https://www.explainthatstuff.com/accelerometers.html

Get Accelerometer (scaled)

The scaled accelerometer compound block is a convenient combination applying a multiplier and an offset to the raw
accelerometer reading.

The scale and offset factors can be typed in directly or provided by plugging in other value blocks.

This block is useful to adjust the sensitivity of the accelerometer and to compensate for offsets such as the ever-present
acceleration due to gravity.

Get Compass

The Kookaberry has an internal 3-axis magnetometer which can measure the magnetic field strength it is subjected to
in three axes (X, Y and Z), as well as the total magnetic field strength, and the compass heading.

• The readings for magnetic field strength are in Gauss.

• The reading for heading are in degrees in the range 0 to 359 with 0 being North

See also https://en.wikipedia.org/wiki/Magnetometer

2.7.2 External Sensors

Sensors’ Pins Connections

External sensors are connected to the Kookaberry by one of the five connectors on the back, P1 through to P5, with
connector P3 having two possible connection points: P3A and P3B. (see the Pins category description).

Each external sensor block has one or more input Pins drop-down selection blocks by which the input Pin can be
selected.

It is possible to replace the Pins dropdown selection block with a String block. This is useful when using Pins other
than those exposed on the rear of the Kookaberry, or when other microprocessor boards that are compatible with
Kookaberry firmware are being used. In those cases type in the Pin’s identifier into the String block.

54 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

https://www.explainthatstuff.com/accelerometers.html
https://en.wikipedia.org/wiki/Magnetometer

KookaBlockly Reference Guide, Release v1.10.0

Get Temperature from DS18x20

The DS18x20 Probe is a waterproof digital temperature sensor that can measure temperature from -55°C to + 125°C
with an accuracy of 0.5 ° C.

This block enables reading of the probe and returns the temperature in degrees centigrade. The drop-down box on this
block enables selection of which Pin connector the sensor is attached to.

The DS18x20 sensor is used for measuring temperature in air and in liquid.

The sensor is pre-calibrated and performs all of the temperature calculations within the sensor.

Learn how to use the sensor here: https://learn.auststem.com.au/peripheral/ds18b20/

Note: The manufacturer of the temperature sensing DS18x20 chip requires a 4700 ohm (often referred to as a 4K7)
pull-up resistor to make the chip work correctly. The Kookaberry’s and Pi Pico’s internal pull up resistor may work
on some DS18x20 chips but not all of them. Try adding a pull-up resistor between the digital input Pin and Vcc by
means of a pull-up adapter module, or use a different make of DS18x20 sensor if troublesome operation occurs.

Get Temperature from NTC

The NTC (Negative Temperature Coefficient) thermocouple sensor works through measuring its resistance which re-
duces as temperature rises. The Kookaberry performs the necessary calculations to convert the sensor’s resistance to
a temperature reading in degrees centigrade.

The options on the NTC value block are:

• The connector to which the sensor is attached

• The parameters A, B and C are the coefficients used in the Stein-Hart equation that is used to convert ther-
mocouple resistance to temperature. Explaining this in more depth is beyond the scope of this manual. It is
recommended that the default values not be altered.

See also https://www.explainthatstuff.com/howthermocoupleswork.html for an explanation of thermocouples.

2.7. Sensors 55

https://learn.auststem.com.au/peripheral/ds18b20/
https://www.explainthatstuff.com/howthermocoupleswork.html

KookaBlockly Reference Guide, Release v1.10.0

Get Temperature or Humidity from DHT11 or DHT22

The Kookaberry supports the DHT11 and DHT22 temperature and humidity sensors. This block obtains the value of
the selected parameter from the DHT sensor.

The drop-down boxes on the DHT value block permit the selection of:

• the sensor reading to be returned: temperature (in degrees Centigrade) or relative humidity (as a percentage)

• the sensor type being used: DHT11 or DHT22

• the connector to which the sensor is connected.

The DHT sensors are only suitable for measuring air temperature.

The difference between the two sensor types is that the slightly more expensive DHT22 sensor has a higher level of
accuracy and precision.

• the DHT11 temperature range is from 0 to 50 degrees Celsius with +-2 degrees accuracy.

• the DHT11 humidity range is from 20 to 80% with 5% accuracy.

• the DHT22 temperature measuring range is from -40 to +125 degrees Celsius with +-0.5 degrees accuracy.

• the DHT22 humidity measuring range is from 0 to 100% with 2-5% accuracy.

Please be sure to select the type of DHT sensor that matches the connected sensor or else erroneous readings will result.

The manufacturers of the DHT11 and DHT22 sensors recommend an interval between successive readings of no less
than 2 seconds. Attempting shorter intervals will result in no reading and could also cause the Kookaberry script to
terminate.

Learn more about using the DHT11 here: https://learn.auststem.com.au/peripheral/dht11/ and the DHT22 here: https:
//learn.auststem.com.au/peripheral/dht22/

Get Temperature / Humidity / Pressure from BME280

The Get Temperature from BME280 block is shown below with the three sets of options available from the drop-down
boxes on the block.

The first drop-down box provides the list of measurements available which are:

1. Temperature in degrees Centigrade

2. Air pressure in hectoPascals (aka milliBars)

56 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

https://learn.auststem.com.au/peripheral/dht11/
https://learn.auststem.com.au/peripheral/dht22/
https://learn.auststem.com.au/peripheral/dht22/

KookaBlockly Reference Guide, Release v1.10.0

3. Relative air humidity in percent

4. Altitude in metres relative to the first reading taken by the KookaBlockly script. That is, the first reading cali-
brates the altitude to zero metres.

The second drop-down box provides two options for the BME280’s address on the I2C bus, that is 0x77 or 0x76.
The default of 0x77 is usually the best to use but it depends on what address the manufacturer of the BME280 sensor
board has chosen. It is possible to have two BME280 sensors, each with a different address, on the same Kookaberry
interface.

The third and fourth drop-down boxes provide options as to which Pins are used for the SCL and SDA signals on the
Kookaberry.

Usually the defaults of P3A for SCL and P3B for SDA will work, using the Kookaberry’s P3 4-wire connector.

Some BME280 boards on the market have the SCL and SDA wires swapped, which requires the selections on the block
to be swapped.

Any other of the Kookaberry’s connectors (P1 to P5) can also be used.

A string block can also be used instead of the drop-down selector blocks and the name of the Pin typed into the block.

About The BME280 Sensor

The BME280 sensor measures air temperature, relative humidity, and barometric air pressure.

There is also a compatible BMP280 sensor that measures air temperature and barometric air pressure, but does not
measure relative humidity. Using the blocks below will return a reading of zero for humidity.

This sophisticated sensor is available mounted on Kookaberry-compatible circuit boards distributed by a variety of
manufacturers.

The interface with the Kookaberry is the I2C serial communications bus. I2C stands for Inter-Integrated-Circuit
Communications (IIC or I2C). See https://en.wikipedia.org/wiki/I%C2%B2C for more detail.

There are four wires in the I2C interface, being: * Vcc power at +3.3 volts DC * Gnd ground (or negative) for signal
and power at 0 volts * SCL being the serial clock signal for communications timing * SDA being the serial data signal
which conveys the digital data being communicated

When using BME280 circuit boards it is important that these signals are connected to the correct Pins on the Kook-
aberry.

2.7. Sensors 57

https://en.wikipedia.org/wiki/I%C2%B2C

KookaBlockly Reference Guide, Release v1.10.0

Get Acceleration / Compass Strength from LSM303

The Get Acceleration from LSM303 block is shown below with the three sets of options available from the drop-down
boxes on the block.

The first drop-down box provides the list of measurements available which are:

1. Acceleration total magnitude in metres / second squared

2. X axis acceleration in metres / second squared

3. Y axis acceleration in metres / second squared

4. Z axis acceleration in metres / second squared

5. Compass total magnetic field strength in Gauss

6. Compass heading in degrees from North

7. Magnetic field strength along the X axis in Gauss

8. Magnetic field strength along the Y axis in Gauss

9. Magnetic field strength along the Z axis in Gauss

The second and third drop-down boxes provide options as to which Pins are used for the SCL and SDA signals on the
Kookaberry.

Usually the defaults of P3A for SCL and P3B for SDA will work, using the Kookaberry’s P3 4-wire connector.

Some LSM303 boards on the market have the SCL and SDA wires swapped, which requires the selections on the block
to be swapped.

Any other of the Kookaberry’s connectors (P1 to P5) can also be used.

A string block can also be used instead of the drop-down selector blocks and the name of the Pin typed into the block.

58 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

KookaBlockly Reference Guide, Release v1.10.0

About the LSM303 Sensor

The LSM303 sensor contains a 3-axis accelerometer and a 3-axis magnetometer. The Kookaberry contains a LSM303
sensor internally, and this block provides functionality to use an externally connected LSM303 sensor.

This sensor can provide acceleration values and magnetic field strength in all three axes, total acceleration and total
magnetic field strengths, as well as compass heading.

See https://www.explainthatstuff.com/accelerometers.html for a simple explanation of what an accelerometer is.

For an explanation of what a magnetometer is, see https://en.wikipedia.org/wiki/Magnetometer.

The interface with the Kookaberry is the I2C serial communications bus. I2C stands for Inter-Integrated-Circuit
Communications (IIC or I2C). See https://en.wikipedia.org/wiki/I%C2%B2C for more detail.

There are four wires in the I2C interface, being: * Vcc power at +3.3 volts DC * Gnd ground (or negative) for signal
and power at 0 volts * SCL being the serial clock signal for communications timing * SDA being the serial data signal
which conveys the digital data being communicated

When using LSM303 circuit boards it is important that these signals are connected to the correct Pins on the Kook-
aberry.

Get LUX from VEML7700

The Get Lux from VEML7700 block is shown below with the two sets of options available from the drop-down boxes
on the block.

The two drop-down boxes provide options as to which Pins are used for the SCL and SDA signals on the Kookaberry.

Usually the defaults of P3A for SCL and P3B for SDA will work, using the Kookaberry’s P3 4-wire connector.

Some VEML7700 boards on the market have the SCL and SDA wires swapped, which requires the selections on the
block to be swapped.

Any other of the Kookaberry’s connectors (P1 to P5) can also be used.

A string block can also be used instead of the drop-down selector blocks and the name of the Pin typed into the block.

About the VEML7700 Sensor

The VEML7700 is a high-accuracy ambient light sensor with an I2C serial interface to the Kookaberry.

The ambient light readings are measured in Lux. Lux is the unit of illuminance, or luminous flux per unit area, in the
International System of Units (SI), and is equal to one lumen per square metre. See https://en.wikipedia.org/wiki/Lux
for more detail.

The interface with the Kookaberry is the I2C serial communications bus. I2C stands for Inter-Integrated-Circuit
Communications (IIC or I2C). See https://en.wikipedia.org/wiki/I%C2%B2C for more detail.

2.7. Sensors 59

https://www.explainthatstuff.com/accelerometers.html
https://en.wikipedia.org/wiki/Magnetometer
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/Lux
https://en.wikipedia.org/wiki/I%C2%B2C

KookaBlockly Reference Guide, Release v1.10.0

There are four wires in the I2C interface, being: * Vcc power at +3.3 volts DC * Gnd ground (or negative) for signal
and power at 0 volts * SCL being the serial clock signal for communications timing * SDA being the serial data signal
which conveys the digital data being communicated

When using a VEML7700 circuit board it is important that these signals are connected to the correct Pins on the
Kookaberry.

Get Power / Voltage / Current from INA219

The Get Power / Voltage / Current from INA219 block is shown below with the four sets of options available from
the drop-down boxes on the block.

The first drop-down box provides the list of measurements available which are:

1. Power in watts DC (direct current).

2. Current in amperes (amps) DC.

3. Load voltage in volts DC.

4. Power supply voltage in volts DC.

Note: The range and resolution of the INA219 sensor readings are set by the value of an internal shunt resistor, the
maximum amps, and the interfacing software.

Important: The safe operating range of the INA219 is given by the device’s data sheet. Nominally the maximum
voltage is 26 volts, maximum current is 8 amps.

The second and third drop-down boxes provide options as to which Pins are used for the SCL and SDA signals on the
Kookaberry.

Usually the defaults of P3A for SCL and P3B for SDA will work, using the Kookaberry’s P3 4-wire connector.

Some INA219 boards on the market may have the SCL and SDA wires swapped, which requires the selections on the
block to be swapped.

Any other of the Kookaberry’s connectors (P1 to P5) can also be used.

A string block can also be used instead of the drop-down selector blocks and the name of the Pin typed into the block.

60 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

KookaBlockly Reference Guide, Release v1.10.0

The fourth option on the block is the I2C address of the board. Up to four INA219 sensors may be connected to a single
I2C bus with any of the addresses 64 (hex 0x40), 65 (hex 0x41), 68 (hex 0x44) or 69 (hex 0x45). Each board must
have a unique I2C address. To change the address in the block select the desired address from the drop-down list.

The fifth option is a drop-down list of shunt resistors fitted to the sensor. The correct value can be obtained by consulting
the data sheet for the sensor board that is being used. This value must be set correctly or else erroneous readings will
result. There are three options for shunt resistor values: 0.01 ohms, 0.05 ohms, and 0.1 ohms. Larger shunt resistance
will improve the resolution of the current reading but will reduce the maximum current that can be measured. Care
must also be taken to not exceed the shunt resistor’s power rating which is typically 2 watts. Power in the shunt resistor
is dissipated as heat and is equal to i^2 x R, where i is current in amps, and R the resistance in ohms.

The sixth option is a drop-down list of the maximum currents to be measured. The values in he list change according
to the shunt resistance selected.

To achieve the best resolution in current measurements, a the maximum current above and closest in value to the
maximum current expected through the load should be selected. The block will try to optimise the INA219 sensor
settings for a given shunt resistor and to avoid selecting currents which are beyond the safe operating range of the
sensor.

The available combinations of shunt resistor and max-amps are shown below.

2.7. Sensors 61

KookaBlockly Reference Guide, Release v1.10.0

About the INA219 Sensor

The INA219 sensor measures direct current, voltage and power from the circuit to which it is connected. It is commonly
called a wattmeter.

In a direct current circuit, electrical power delivered to an electrical load (measured in watts) is the arithmetic product
of the current flowing through the load (measured in amperes) and the voltage across the load’s terminals (measured
in volts).

To measure the current, a low value resistor is placed in series with the load, and the voltage across the resistor’s
terminal is measured. By applying Ohm’s Law, the current can be derived (current I = voltage V / resistance R).

See also

• https://en.wikipedia.org/wiki/Voltmeter,

• https://en.wikipedia.org/wiki/Ammeter and

• https://en.wikipedia.org/wiki/Ohm%27s_law

The INA219 sensor is commonly mounted on a breakout board equipped with terminals to attach the load and a power
supply, and a shunt resistor used to measure current flowing through the load.

The interface with the Kookaberry is the I2C serial communications bus. I2C stands for Inter-Integrated-Circuit
Communications (IIC or I2C). See https://en.wikipedia.org/wiki/I%C2%B2C for more detail.

There are four wires in the I2C interface, being: * Vcc power at +3.3 volts DC * Gnd ground (or negative) for signal
and power at 0 volts * SCL being the serial clock signal for communications timing * SDA being the serial data signal
which conveys the digital data being communicated

When using a INA219 circuit board it is important that these signals are connected to the correct Pins on the Kook-
aberry.

Get Soil Moisture

The Get Soil Moisture block is shown below with three options available on the block.

Soil moisture is given as a percentage, nominally in the range 0 to 100. Values outside that range can be returned
depending on the calibration values set in the dry= and wet= fields on the block.

The first option is a drop-down block to select which Pin the sensor is connected to. A String block can also be used
instead of the drop-down selector block and the name of the Pin typed into the block.

To the right of the Pin selector drop-down list are two fields which can be manually edited. These are the voltages
given by the sensor when it is dry and when it is wet. The default values suit a capacitive sensor.

1. For a resistive sensor, the dry value should be lower than the wet value. Dry= 0 volts and wet= 3.3 volts are
suitable starting values.

2. For a capacitive sensor, the dry value should be higher than the wet value. Dry= 3.3 volts and wet= 0 volts are
suitable starting values.

62 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

https://en.wikipedia.org/wiki/Voltmeter
https://en.wikipedia.org/wiki/Ammeter
https://en.wikipedia.org/wiki/Ohm%27s_law
https://en.wikipedia.org/wiki/I%C2%B2C

KookaBlockly Reference Guide, Release v1.10.0

These values can be tuned with experience and the use of a calibrated soil moisture meter to improve the accuracy of
the readings.

About Soil Moisture Sensors

There are two types of soil moisture sensor available:

1. Resistive soil moisture sensor which measures the conductivity of soil by applying an electrical voltage using
two spikes.

2. Capacitive soil moisture sensor, consisting of a single broad spike, which measures changes in the soil’s capaci-
tance due to the presence of moisture.

While both kinds of sensor are effective, the capacitive soil moisture sensor is much more durable as it is not susceptible
to corrosion which affects resistive sensors in prolonged use.

Learn more about using the resistive soil moisture sensor here: https://learn.auststem.com.au/peripheral/
analogue-soil-moisture-sensor/

2.7.3 More Sensor Learning Resources

More information on sensors that can be used with the Kookaberry is here: https://learn.auststem.com.au/peripherals/

2.8 Actuators

The Actuators category provides the blocks that enable the use of these servos. See Fig. 2.19.

Fig. 2.19: The palette of KookaBlockly Actuator blocks

The Actuators category comprises blocks to use Hobby Servos and Continuous Rotation Servo Motors.

Hobby Servos and have a built in motor, a feedback circuit and a motor driver. They can be set to a particular angle
and have a constrained range of motion, typically 180 degrees. These servos are used in robot arms, for example.

Continuous Rotation Servos, as the name implies, can rotate continuously like a motor. The control signal sets the speed
of rotation, typically in degrees per second. Continuous rotation servos can be used for driving the driving wheels of
vehicles.

The supported servo motors have a three pin connector comprising:

a. Gnd - power supply ground

2.8. Actuators 63

https://learn.auststem.com.au/peripheral/analogue-soil-moisture-sensor/
https://learn.auststem.com.au/peripheral/analogue-soil-moisture-sensor/
https://learn.auststem.com.au/peripherals/

KookaBlockly Reference Guide, Release v1.10.0

b. Vcc - positive DC power supply, and

c. A pulse servo signal that controls the servo motion.

A typical Hobby Servo operates with a power supply voltage of around 4.5 to 6 volts.

While it is possible to drive some small servos directly from the Kookaberry, it is recommended that the servo be
powered a separate power supply due to the required servo power being higher than the Kookaberry can provide. A
directly connected servo will be weak and slow, and may result in the Kookaberry’s power supply shutting down on
overload.

2.8.1 Actuators’ Pins Connections

Actuators are connected to the Kookaberry by one of the five connectors on the back, P1 through to P5, with connector
P3 having two possible connection points: P3A and P3B. (see the Pins category description).

Each actuator block has an input Pins drop-down selection blocks by which the input Pin can be selected.

It is possible to replace the Pins dropdown selection block with a String block. This is useful when using Pins other
than those exposed on the rear of the Kookaberry, or when other microprocessor boards that are compatible with
Kookaberry firmware are being used. In those cases type in the Pin’s identifier into the String block.

2.8.2 Set Servo to Angle

This block is for a Hobby Servo, which is a servo is a motor that rotates over a specified angular range.

The servo block sets the angle to which a servo motor should move specified in degrees. The angle can be calculated
by other value blocks or be specified as a fixed value. The option for this block is which connector the servo is attached.

The block has two parameters:

1. A dropdown block to selected which Pin the servo’s control signal is connected to. A string block can also be
used instead of the drop-down selector blocks and the name of the Pin typed into the block.

2. The angle, in degrees, to which the servo is to rotate. The angle can be between - (range of rotation) / 2 to +
(range of rotation) / 2. The rotation will occur almost instantly.

Important: Please note that all but the smallest 9g servos should not be directly plugged into a Kookaberry connec-
tor. These devices require special electronics to supply them with more power. Plugging in large servos without the
necessary driving electronics may shut down and possibly irreparably damage the Kookaberry!

64 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

KookaBlockly Reference Guide, Release v1.10.0

2.8.3 Set Servo to Angle Taking Seconds

This block is the same as the Set Servo to Angle block with the addition of a parameter to set the time, in seconds,
over which the angular motion should occur. This allows for a less abrupt and more graceful motion of the servo.

The block has three parameters:

1. A dropdown block to select which Pin the servo’s control signal is connected to. A string block can also be used
instead of the drop-down selector block and the name of the Pin typed into the block.

2. The angle, in degrees, to which the servo is to rotate.

3. The time, in seconds, over which the rotation will occur.

2.8.4 Set Servo to Speed

This block is for a Continuous Servo, which is a motor that rotates at a specified rotational speed.

The servo block sets the angular speed at which a servo motor should rotate specified in degrees per second. The speed
can be calculated by other value blocks or be specified as a fixed value. The option for this block is which connector
the servo is attached.

The block has two parameters:

1. A dropdown block to select which Pin the servo’s control signal is connected to. A string block can also be used
instead of the drop-down selector block and the name of the Pin typed into the block.

2. The speed at which the servo is to rotate in degrees / second. The target speed will occur almost instantly.

Important: Please note that all but the smallest 9g servos should not be directly plugged into a Kookaberry connec-
tor. These devices require special electronics to supply them with more power. Plugging in large servos without the
necessary driving electronics may shut down and possibly irreparably damage the Kookaberry!

2.8.5 Set Servo to Speed Taking Seconds

This block is for a Continuous Servo, which is a motor that rotates at a specified rotational speed.

2.8. Actuators 65

KookaBlockly Reference Guide, Release v1.10.0

This block is the same as the Set Servo to Speed block with the addition of a parameter to set the time, in seconds,
over which the change in angular speed should occur. This allows for a less abrupt and more graceful transition in the
speed of the servo.

The block has three parameters:

1. A dropdown block to select which Pin the servo’s control signal is connected to. A string block can also be used
instead of the drop-down selector block and the name of the Pin typed into the block.

2. The speed, in degrees / second, at which the servo is to rotate.

3. The time, in seconds, over which change to target speed will occur.

2.8.6 More Actuator Learning Resources

More information on using actuators with the Kookaberry can be found here: https://learn.auststem.com.au/
peripheral/micro-servo/

2.9 Radio

Radio communications between Kookaberries is possible using the Radio blocks shown in Fig. 2.20.

Fig. 2.20: The palette of KookaBlockly Radio blocks

Radio communications is useful for sending messages, sharing data, for remote monitoring, and for remote control.

The Kookaberry has an internal short-range digital packet radio, and can also connect to one or more external longer
range radios.

66 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

https://learn.auststem.com.au/peripheral/micro-servo/
https://learn.auststem.com.au/peripheral/micro-servo/

KookaBlockly Reference Guide, Release v1.10.0

2.9.1 Internal Radio

The Kookaberry is equipped with a built-in digital radio transceiver than is able to send and receive small amounts of
digital data.

The radio uses the same radio spectrum as WiFi signals and Bluetooth signals, and therefore has a similar range of 10
to 20 metres. The internal radio cannot communicate using WiFi or Bluetooth directly.

All Kookaberries on the same radio channel can listen in to the communications on that channel.

Similarly, multiple Kookaberries transmitting on the same channel may interfere with each others’ communications.
Errors caused during radio communications are detected and messages with errors caused by interference will be
discarded.

The internal radio is compatible with the BBC Micro:Bit’s radio, as it uses the same radio chip, radio frequencies, and
digital signalling.

It is possible to exchange messages between the Kookaberry and the Micro:Bit provided the same radio channel is
selected on both devices, nominally on Channel 7.

By default, the length of the messages that can be sent is 30 bytes or less when using KookaBlockly. Other Radio
parameters such as the radio channel and speed of transmission are also set to default values.

In the latest release of KookaBlockly, functionality has been added to alter the default parameters of the internal radio.
Care must be taken however that all the Kookaberries involved in communication have their radio parameters set in
the same way.

The following blocks are available to control, receive and send messages using the internal Kookaberry radio.

When Radio Receive

This is a control block which contains actions that will be taken when a message is received by the Radio. If no message
is received then no actions within the scope of the block will be taken.

Radio Read

This value block will read the first Radio message in the queue of Radio messages received. Once read the Radio
message is deleted from the message queue.

2.9. Radio 67

KookaBlockly Reference Guide, Release v1.10.0

Radio Send

This action block sends the data within the attached value block as a message via the Radio to be received by all other
radios on the same channel.

The data can be the result of a value block, or be a fixed message as shown above.

The length of the message must be no longer than the message length limit or else a program error will result.

Typically an alphanumeric text character occupies only one byte but some special characters may occupy two or more
bytes.

Set Radio channel

This block enables any of the available Radio channels to be selected.

The Kookaberry’s internal radio is capable of transmitting and receiving on any of 84 channels. The default Radio
channel is 7.

An integer value between 0 and 83 can be selected by editing the number in the block.

Messages will be sent via this channel and only messages received via this channel will be put onto the incoming
message queue.

It is therefore important that for two or more Kookaberries to intercommunicate, that they all be set to the same
channel.

Each channel is 1MHz wide, starting at Channel 0 at 2400MHz and ending at Channel 83 at 2483MHz.

Set Radio Parameter

The Kookaberry’s internal radio can be configured in a variety of ways if the default settings are not suitable.

This block provides access to the numerous parameters that can be set.

Only one parameter can be set per instance of the block. Multiple instances of the block must be used to set multiple
Radio parameters.

The block contains a drop-down list that enables selection of which parameter is to be set, and an input for a block that
specifies the value of the selected parameter:

1. maximum payload (default=32) defines the maximum length, in bytes, of a message sent via the Radio. It can
be between 1 and 251 bytes long.

68 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

KookaBlockly Reference Guide, Release v1.10.0

2. queue length (default=3) specifies the number of messages that can be stored on the incoming message queue.
If there is no space left on the queue then additional incoming messages are dropped. Can be between 1 and 254.

3. channel (default=7) an integer value between 0 and 83 inclusive that defines the channel (actually frequency)
to which the Radio is tuned. Messages will be sent via this channel and only messages received via this channel
will be put onto the incoming message queue. Each step is 1MHz wide, starting at 2400MHz.

4. power (default=6) an integer value between 0 and 7 inclusive which indicates the strength of signal used when
sending a message. The higher the value the stronger the signal, but the more power is consumed by the device.
The numbering translates to positions in the following list of dBm (decibel milliwatt) values: -30, -20, -16, -12,
-8, -4, 0, 4.

5. data rate (default=1) indicates the speed at which data transfer (send and receive) takes place. It can be 0, 1
or 2, for 250kbit/sec, 1Mbit/sec, or 2Mbit/sec respectively

6. address (default=0x75626974) an arbitrary name, expressed as a 32-bit address, that’s used to filter incoming
packets at the hardware level, keeping only those that match the address you set. The default matches that used
on the micro:bit.

7. group (default=0) an 8-bit value (0-255) used in conjunction with address to filter incoming messages. This
effectively makes the full address 40 bits long.

8. timestamp units (default=1) an integer 1 (TIMESTAMP_MS milliseconds) or 2 (TIMESTAMP_US mi-
croseconds) that indicates the units used in the timestamp entry returned by the receive_full() function.

Note: It would be very unusual to alter any of the Radio parameters, other than the channel, when coding using
KookaBlockly.

2.9.2 External Radio

The Kookaberry can be connected to up to two external radio transceivers to communicate with other Kookaberries
(or other computers) that use the same radio transceivers.

The preferred radio transceiver is the HC-12 transceiver which operates in the 433Mhz radio band.

This radio band is the same as is used for domestic applications such as garage door openers and home weather stations.
It offers the advantage of communicating over a longer range than the Kookaberry’s internal radio.

Depending on the antenna fitted and the intervening radio environment, a range of at least 100 metres can be expected,
with up to 1 kilometre possible in the right circumstances.

Successful communication requires that all transceivers are set to the same parameters, particularly the same radio
channel.

Setting up the HC-12 to other than its default parameters is beyond the scope of KookaBlockly. Please refer to the
HC-12 data sheet at https://www.elecrow.com/download/HC-12.pdf.

Radios other than the HC-12 can be used provided they emulate a wired connection and do not require any control
commands.

The interface to the Kookaberry is via its UART (Universal Asynchronous Receiver and Transmitter) serial interface
at 9600 bits/second.

Two UART interfaces are available on the Kookaberry:

A. This interface is accessed by using plug P3 on the back of the Kookaberry. This is Radio A.
B. This interface requires an expansion board that connects via the Kookaberry’s edge connector. The plug on

such a board is P6. This Radio is designated Radio B.

2.9. Radio 69

https://www.elecrow.com/download/HC-12.pdf

KookaBlockly Reference Guide, Release v1.10.0

When HC-12 Receive

This is a control block which contains actions that will be taken when a message is received by the selected external
radio. If no message is received then no actions within the scope of the block will be taken.

The drop-down list on the block selects which of the external radios (A or B) is being used.

HC-12 Read

This value block will read the first Radio message in the queue of Radio messages received by the external radio. Once
read the Radio message is deleted from the message queue.

The drop-down list on the block selects which of the external radios (A or B) is being used.

HC-12 Send

This action block sends the data within the attached value block as a message via the external radio to be received by
all other radios on the same channel.

The data can be the result of a value block, or be a fixed message as shown above.

The drop-down list on the block selects which of the external radios (A or B) is being used.

HC-12 Send and

This action block sends the data within the attached value blocks as a message via the external radio to be received by
all other radios on the same channel.

The data sent is a concatenation of the two value blocks.

70 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

KookaBlockly Reference Guide, Release v1.10.0

The first block can be a descriptor (eg. Temperature) and the second the value derived from a temperature sensor.

The drop-down list on the block selects which of the external radios (A or B) is being used.

HC-12 Set Channel

This block sets a virtual (named) channel for the external radio.

The external radio will send all messages with a prefix equal to the channel name.

The external radio will also only receive messages with the same channel name.

Note: This virtual channel does not affect the radio frequency that the external radio uses. It is only a prefix that
groups messages into groups.

The drop-down list on the block selects which of the external radios (A or B) is being used.

2.10 Logging

The Logging blocks, shown in Fig. 2.21, provide a facility for writing data into files on the Kookaberry.

Fig. 2.21: The palette of KookaBlockly Logging blocks

Note: At present KookaBlockly does not directly support the reading of files from the Kookaberry’s file system.

2.10. Logging 71

KookaBlockly Reference Guide, Release v1.10.0

MicroPython scripting does however contain extensive functionality for reading, writing and manipulating the Kook-
aberry’s files. In the Advanced Category there is an example of using Python blocks to read a text file.

The Kookaberry contains a 3 to 4 megabyte (depending on hardware model) non-volatile serial memory store which is
used to store files. These files can be written and read by the Kookaberry and also via a USB interface by any attached
computer.

Logging files are text files which are in the comma-separated-values (CSV) format. That is, each line contains al-
phanumeric text data which are separated by commas. The first line of the files can be used to represent headings for
the data item columns that are in the following lines. An example of a CSV file is:

Time,Temperature,Humidity
12:04:00,25,50
12:09:00,26,49
12:14:00,27,48
etc

During experiments, data is collected over time from instruments comprising sensors. These data are stored in a CSV
file at time intervals as above.

When the experiment is finished, the data can be retrieved from the CSV file stored on the Kookaberry using a
computer to perform analysis of the results. CSV text data is most commonly used to draw graphs of the data values
over time using a spreadsheet program.

2.10.1 Clear File

The file block creates a new empty text file with the specified name in the Kookaberry’s file system. If a file with the
same name already exists, then it will overwritten with an empty file.

The name of the file is specified in the to file parameter with log.csv the default name. Edit this field to change the
file name. This can be any legal filename, usually in the form name.typ where name is a text string and typ is a short,
usually three letter, file type description.

CSV is the recommended file type, but other common types are: txt for text files, and log for log text files. File type
conventions are determined by the computer operating system that will read these files.

2.10.2 Log To File

The Log To File block writes the text provided by the attached value block(s) as a new line appended to the named text
file. If the text file name does not already exist, a new empty text file with the specified name will be created.

The value blocks attached as inputs to this block will provide text values to be written to the line in the file, separated
by commas.

72 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

KookaBlockly Reference Guide, Release v1.10.0

The first input, by default, is a text representation of the current time read from the Kookaberry’s internal clock. This
input block can be replaced by any other value block that provides a text string.

There are three varieties of the Log To File block, accepting one two or three further inputs. These inputs are also
expected to be text string representations of the data to be recorded in the file record.

To create a heading line in the CSV file, use the appropriate Log To File block first within an On Start control block
and plug in text string value blocks with the names of each of the columns.

Note: KookaBlockly presently supports a maximum of four data items per file record inclusive of the time string
input.

If logging the time is not needed, then the time string can be replaced with some other string input.

If more data items are required then it is possible to use an Advanced block with the required MicroPython script in it.

The Show Script button on the KookaBlockly editor will open a window with the MicroPython script derived from
the current KookaBlockly script.

Hint: Use a Log To File block to model the first four data items, copy the equivalent MicroPython (it all has to be on
one line), paste it into the Advanced block and modify it to suit your application.

You will need to learn about MicroPython nonetheless to make it work correctly.

2.11 Boolean

Boolean blocks are value blocks used to test whether a specified condition is True (1) or False (0). See Fig. 2.22.

2.11. Boolean 73

KookaBlockly Reference Guide, Release v1.10.0

Fig. 2.22: The palette of KookaBlockly Boolean blocks

2.11.1 Comparison

This Comparison block compares the two value blocks that are given with the rule selected from the dropdown menu
and outputs a result of True or False.

The options available in the drop-down selection box are:

1. the inputs are equal (=)

2. the inputs are not equal ()

3. the first input is less than (<) the second input

4. the first input is less than or equal to () the second input

5. the first inputs is greater than (>) the second input

6. the first input is greater than or equal to () the second input.

Equal to (=) and not equal to () work for almost anything including numbers, lists (arrays) and character strings.

The other operands only work for numbers.

74 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

KookaBlockly Reference Guide, Release v1.10.0

2.11.2 Boolean And / Or

The Boolean And / Or block performs the selected Boolean operation on its two inputs.

Both inputs are required to be Boolean. It is not possible to plug numbers or text strings into the inputs.

• and will give back a True only if both of its inputs are True.

• or will give back True if either or both of its inputs are True.

2.11.3 Not

This block takes a True/False Boolean value block input and logically inverts it.

That is, True becomes False, and False become True.

2.11.4 True / False

This value block gives a Boolean True or False value depending on which option is selected. It is generally used to
initialise variables that are subsequently used in a program.

2.11.5 Null

This value block is the value that variables have before they are given a value. It is a special value that represents “none”
or “nothing” but is distinct from 0. However it is treated as a zero or False value if used.

2.11. Boolean 75

KookaBlockly Reference Guide, Release v1.10.0

2.11.6 Test If

This block will output one of two input values depending on whether the test input is True or False.

If the block in the Test input socket is True, the value in the if true input is transferred to the output.

If the block in the Test input socket is False, the value in the if false input is transferred to the output.

2.12 If–Else

The If-Else category comprises control blocks which direct the flow of a program depending on the results of the tests
carried out by these blocks. See Fig. 2.23.

Fig. 2.23: The palette of KookaBlockly If-Else blocks

2.12.1 If-Do

The if input socket takes a value block or compound block that represents a True or False value.

If the value block in the conditional input is True, it runs the blocks nested inside.

If the block in the conditional input is False, it skips the nested blocks.

76 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

KookaBlockly Reference Guide, Release v1.10.0

2.12.2 If-Do-Else-Do

This block is an extension of the If-Else-Do block. It adds the else bracket into which the action blocks that are to be
run if the tested input is False.

2.12.3 If-Do-Else If-Do-Else-Do

This block is a further extension of the If-Do-Else-Do block. A second conditional else if input is inserted and a bracket
for actions to be run if the else if input is True.

2.12.4 If-Do Configuration

The If-Do block is configurable.

By clicking the gear icon on the block, extra elections can be added by dragging the else if or else blocks into the white
area to connect under the if block in the configuration box:

• else if sections can add more conditional sockets to check for further input Boolean values, and a do bracket to
contain action blocks to be run if the input is True. Multiple else if sections can be configured.

2.12. If–Else 77

KookaBlockly Reference Guide, Release v1.10.0

• a single else section can be added to the end to contain the action blocks to be run if none of the previous
conditions are True.

To remove any of the else if or else sections, drag them back into the grey area of the configuration box.

To close the configuration box, simply click the gear icon once more.

2.13 Loops

Loops are a category of control blocks, shown in Fig. 2.24, that direct the flow of a program. They run the nested
action blocks a number of times in accordance with the test taken at the beginning of the Loop.

Fig. 2.24: The palette of KookaBlockly Loop blocks

2.13.1 Loop Repeat

This block runs the blocks nested inside of it for the specified number of times.

The number of iterations is provided by an input from a numeric value block which can contain a fixed number (from
the Math blocks category), a numeric computation (using blocks from the Math blocks category), or a variable. See
also the Variables category.

When the iterations of the Loop are complete the program moves on to the blocks below it.

78 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

KookaBlockly Reference Guide, Release v1.10.0

2.13.2 Loop Repeat While / Until

In this block the two operations of While and Until are very similar to each other. Both require a Boolean True / False
value block in their input socket.

Repeat While will continue as long as the input value block is True.

Repeat Until will continue as long as the input value block is False.

2.13.3 Count With Variable From-To-By

This Loop will run its nested blocks several times depending upon the input numbers given.

The Loop will start by setting the chosen variable to its starting value using the first input.

Each time the Loop completes (known as an iteration), the variable’s value is changed by the number in the third input.

The Loop will continue to iterate until the value of the variable is equal to or greater than the number in the second
input.

So if the Loop is configured to run from 0 to 3 by 1, it would run the nested blocks with the variable’s value being
0, 1 and 2. Then the program would advance to the next block after the Loop. During the Loop, the variable’s value
indicates which repetition of the Loop is being run and can be used in calculations.

The variable drop-down list contains the names of the available variables. The default variables are i and j.

The options Rename variable and Delete variable are configuration functions to manage the creation of new variables
or deletion of existing variables. See also the Variables Category.

Count With Variable Example

In Fig. 2.25 is an example of the Loop counting between 1 and 16 by 3.

Fig. 2.25: Example script counts from 1 to 16

On each iteration of the Loop, the value of the variable i is printed on a new line on the display, as shown in Fig. 2.26.

2.13. Loops 79

KookaBlockly Reference Guide, Release v1.10.0

Fig. 2.26: The display resulting from Fig. 2.25

2.13.4 For Each Item In List

This block has an input socket that takes a List. See the Lists Category.

The Loop begins by setting the chosen variable to be the same as the first item from the List and then it runs the nested
blocks.

The Loop then sets the chosen variable as the second item of the List and runs the nested blocks again.

The Loop repeats until it has run once for every item from the List.
This type of Loop is useful for printing a List of text items in subsequent lines on the Display, or for processing a List
of readings gathered from sensors.

2.13.5 Break / Continue Loop

This block must be placed inside a Loop. If the block is not placed in a Loop it will turn white with a warning symbol
- see Fig. 2.28.

Fig. 2.27: The Loop Breakout / Continue used in a Loop

This block is used to either break out of the Loop, or to stop the current iteration of a Loop.

• break out immediately ends the Loop and jumps to the next block after the Loop.

• continue with next iteration stops the current iteration and jumps back to the top of the Loop and will run again
if the Loop allows it.

The usual way to use this block is in an If-Do block where breaking a Loop is subject to a logical test as in Fig. 2.27.

80 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

KookaBlockly Reference Guide, Release v1.10.0

Fig. 2.28: The Warning appearance of the Loop Breakout / Continue block when not inside a Loop

2.14 Strings

Strings are an array of consecutive text characters such as “Hello”, or “this is a string”.

The Strings Category provides a set of value blocks for specifying and formatting strings, as shown in Fig. 2.29.

Fig. 2.29: The palette of KookaBlockly String blocks

2.14.1 Text

This block allows a user to type in text that can be used as a string value by other blocks.

Type in the desired text between the double-quotes ", for example "Hello World".

2.14.2 Format as Integer

This block takes a numerical value block and formats its result as an integer with a width as defined in the block.

For example, the integer 1000 would be formatted as the character string “1000”.

The results will in some cases vary:

2.14. Strings 81

KookaBlockly Reference Guide, Release v1.10.0

• if the integer is wider than the specified width, the format will be enlarged to accommodate the number of
characters required. For example, if the width is specified as 2 but the number is 1000, the output will have
width of 4 being "1000".

• if the specified width of the output is greater than the width required, then leading spaces will be added. For
example, if the width is specified as 2 but the number is 4, the output will be "4".

2.14.3 Format as Floating Point

This block takes a numerical value block and formats its result as a floating point number with the specified number of
decimal places and width (not including the decimal point).

For example, the number 123.4567 formatted as 2 decimals with width 5, would result in the character string “123.46”.
Note that the last digit is rounded up if greater than or equal to 5 or down if less than 5.

The results will in some cases vary:

• if the number is wider than the specified width, the format will be enlarged to accommodate the number of
characters required. For example, if the width is specified as 3.2 but the number is 1000.12, the output will
have width of 6.2 being "1000.12".

• if the specified width of the output is greater than the width required, then leading spaces and trailing zeroes will
be added. For example, if the width is specified as 4.2 but the number is 3.1, the output will be " 3.10".

2.14.4 Convert to Integer

This block converts an input string value and outputs a numeric integer value.

For example, an input of "1234" will output the integer number 1234.

Inputs strings that are not numeric integers, for example "ten" or "10.1", will raise a formatting error and the script
will terminate.

Numeric inputs are permitted, for example a floating point input 10.1 will yield an integer output 10. Integer inputs
will be passed through as integer outputs.

This block is useful when parsing text from the Radio into integer data for use in computations.

82 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

KookaBlockly Reference Guide, Release v1.10.0

2.14.5 Convert to Float

This block converts an input string value and outputs a numeric floating point value.

For example, an input of "1234.56" will output the integer number 1234.56.

Inputs strings that are not numeric floats, for example "ten point one" will raise a formatting error and the script
will terminate.

Numeric inputs are permitted, for example an integer input 10 will yield an integer output 10.0. Floating point inputs
will be passed through as floating point outputs.

This block is useful when parsing text from the Radio into floating point data for use in computations.

2.15 Lists

The Lists category, shown in Fig. 2.30, provides a large number of blocks to create and manipulate Lists.

Fig. 2.30: The palette of KookaBlockly List blocks

A List is an array of zero or more items which can be Variables, numbers, characters, text, or other Lists.
To create a List, first create a Variable with the name of the List, and then set its value to that returned by the Create
List block.

2.15. Lists 83

KookaBlockly Reference Guide, Release v1.10.0

See the Variables Category to learn about creating and using Variables.

2.15.1 Create List

This value block gives back a new, empty List.

The gear icon in the block allows the user custom tailor the block to add items.

Create List Example

Here is an example of setting the value of a variable called "list" to a List of the names of Greek letters: [“alpha”,
“beta”, "gamma"].

84 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

KookaBlockly Reference Guide, Release v1.10.0

2.15.2 Create List With Item Repeated No. of Times

This action block creates a new List with the left-hand input item repeated several times as specified by the number
inserted into the right-hand input.

In this example, a variable called ”list” is set to a List of the number “123” repeated 5 time, that is: [123, 123,
123, 123, 123].

2.15.3 Length Of List

This value block calculates the number of items in the input List.
In this example the number of items in "list" which contains [“alpha”, “beta”, “gamma”] is printed on the
display as Length of list is 3.

2.15.4 Is Empty

This Boolean value block is True if the input List is empty (i.e. it has no items in it) or is False if the List has
members.

2.15. Lists 85

KookaBlockly Reference Guide, Release v1.10.0

2.15.5 In List Find First / Last Occurrence of Item

This value block searches a List for a given item and is set to the index, a numeric integer, in the List at which the item
was found, if it was found.

A List index ranges from 0 to n-1, where n is the number of items in the List. List indexing follows the rules of
KookaBlockly’s underlying Python programming language.

If the item was not found the value block is set to -1 instead.

The first input socket accepts the variable which is a List, and the second input item specifies the value that is being
searched for.

The drop-down list gives the choice of finding the first or the last occurrence of the specified item in the List.

In List Find Example

In this example we search for the first occurrence of “gamma” in the List [“alpha”, “beta”, “gamma”] and print
the result on the display as Index is 2, "gamma" being the third item in the List.

2.15.6 In List Get / Remove Item

This value block operates on a List to retrieve, retrieve and remove, or just remove an item at a particular position in
the List. The value of the List item is returned as the result of the block.

The images show the block and the drop-down list of the operation choices available in the block:

1. get fetches the indexed item from the List without altering the List’s content

2. get and remove fetches the indexed item from the List and then deletes it from the List. The length of the List
reduces by one.

3. remove deletes the indexed item from the List. This is an action block and does not return any value.

86 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

KookaBlockly Reference Guide, Release v1.10.0

The second drop-down list has a number of choices as to which item in the List to get or set:

1. # the index of the item in the List
2. # from end the #th item from the end, where 0 would be the last item, 1 the second-last item etc.

3. first the first item in the List. The index input will not be present.

4. last the last item in the List. The index input will not be present.

5. random uses a random item from the List. The index input will not be present.

In List Get / Remove Examples

In this example, the variable item is set to the result of getting the item with index 2 from the List containing [“alpha”,
“beta”, “gamma”]. The result is printed on the display as Item is gamma.

In this example, items from a List containing [“alpha”, “beta”, “gamma”], are removed and printed on the display
until the List is empty.

2.15. Lists 87

KookaBlockly Reference Guide, Release v1.10.0

2.15.7 In List Set / Insert Item

This action block either changes the value of an item at a specified location to the input value or inserts a new item with
the input value at the specified location in a chosen List.

The first parameter is a drop-down list with the operation choices:

1. set writes the input value to the indexed item in the List, overwriting its prior value

2. insert at creates a new member of the List at the indexed position with the input value. The members from the
old index onwards are shifted into the next position and the length of the List increases by one.

The second drop-down list has a number of choices as to which item in the List to set or insert:

1. # the index of the item in the List
2. # from end the #th item from the end, where 0 would be the last item, 1 the second-last item etc.

3. first the first item in the List. The index input will not be present.

4. last the last item in the List. The index input will not be present.

5. random uses a random item from the List. The index input will not be present.

In List Set / Insert Example

By way of example, we may wish to add "delta" to the end of the List initially containing the values [“alpha”,
“beta”, “gamma”].

88 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

KookaBlockly Reference Guide, Release v1.10.0

2.15.8 In List Get Sub-List

This value block copies a portion of a chosen List and provides the Sub-List as its output.

As for the Create List block, a variable is needed to contain the output Sub-List.
The Sub-List portion starts from the first chosen index and ends at and includes the second chosen index.

Two drop-down boxes provide options for specifying the beginning index and the ending index:

1. # the index of the item in the List
2. # from end the #th item from the end, where 0 would be the last item, 1 the second-last item etc.

3. first the first item in the List, only for the beginning index. The index input will not be present.

4. last the last item in the List, only for the ending index. The index input will not be present.

The beginning index must be less than or equal to the ending index. If not, an error will be raised and the script will
terminate.

Get Sub-List Example

In this example a smaller List is assigned to variable “sublist” comprising the the items from index number 1 to the
last item in the List containing [“alpha”, “beta”, “gamma”, "delta"].

The Sub-List will contain [“beta”, ”gamma”, delta”].

2.15.9 Make List / Text With Delimiter

This value block will, depending on the option chosen in the drop-down list:

1. list from text parses a text string into items separated by the delimiter text and arranges the items into a List.
2. text from list takes the items in a List and concatenates them into a text string separated by the delimiter text.

2.15. Lists 89

KookaBlockly Reference Guide, Release v1.10.0

Make List / Text Examples

An example is to parse a text string into a List. The text string contains the first four Greek letters separated by commas.
The results is a List of the Greek letters as the variable “letters”.

The complementary operation is to generate the original text from the List containing [“alpha”, “beta”,
“gamma”, "delta"] and to print it on the Kookaberry’s display.

2.15.10 Sort List

This value block allows a List to be re-ordered by sorting in numeric or alphabetic order in an ascending or descending
format.

The first option is for the type of sorting:

1. numeric if the List contains numbers, the List will be sorted in numeric order

2. alphabetic the List will be sorted according to the ASCII character codes of the contents. See https://www.
ascii-code.com

3. alphabetic, ignore case the List is sorted into ASCII code order, but all letters are treated as lower-case.

The second option is for the order of sorting:

1. ascending the List is ordered from low to high values

2. descending the List is ordered from high to low values

90 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

https://www.ascii-code.com
https://www.ascii-code.com

KookaBlockly Reference Guide, Release v1.10.0

Sort List Example

This example prints the items in the List containing [“alpha”, “beta”, “gamma”, "delta"] on successive rows
of the Kookaberry display in alphabetical order.

The result of the example can be seen on the Kookaberry’s display where the sorted order of the List is printed on
successive lines:

2.16 Math

Fundamental to any computer program is the ability to do mathematical computations.

The Math Category provides the repertoire of mathematical functions shown in Fig. 2.31.

2.16.1 Number

This value block represents a fixed number that is specified by editing the default number 123 in the block.

The number can be any valid integer or floating point number:

• the number can be signed, that is, preceded by the character + (default and assumed if not present) or the character
- for negative numbers

• there is no limit (other than computer memory) for how large the number can be

• an integer in the form 123456

2.16. Math 91

KookaBlockly Reference Guide, Release v1.10.0

Fig. 2.31: The palette of KookaBlockly Math blocks

92 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

KookaBlockly Reference Guide, Release v1.10.0

• a floating point number in the form 123456.789

• scientific notation in the form 1.234567e5 can be used and will be displayed in integer or floating point form
as appropriate 123456.7

Number Example

This example prints a number on the Kookaberry’s display:

2.16.2 Arithmetic

This value block operates on two input values or value blocks that represent numbers with the chosen arithmetic oper-
ator.

The operations that can be chosen from the drop-down list are:

1. addition (+)

2. subtraction (-)
3. multiplication (x)

4. division (÷)

5. and raised to the power of (^)

Arithmetic Example

This example prints the result of 2 raised to the power of 3 (ie. 2 cubed which is 8) on the Kookaberry’s display:

2.16. Math 93

KookaBlockly Reference Guide, Release v1.10.0

2.16.3 Multiply and Add

This value block multiplies the first numerical value block input by the second numerical value block input and then
adds the third numerical value input to the product of the first two inputs.

This block is a convenient way to achieve the same result as using two Arithmetic blocks as in the example below.
Both blocks will print the same result (10).

2.16.4 Scale Function

The Scale value block will perform the necessary computations to convert the number on the first input from a scale
defined by the second input, to another scale defined by the third input.

Scale Example

By way of example, this script using the Scale block will convert a Celsius water temperature sensor reading (range
freezing point 0 to boiling point 100) into the equivalent degrees Fahrenheit (range freezing point 32 F to boiling point
212 F) and print it on the Kookaberry’s display.

94 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

KookaBlockly Reference Guide, Release v1.10.0

2.16.5 Math Function

This value block performs the chosen mathematical function on the numerical value input.

The options that are available are:

1. square root - gives the number that when multiplied by itself is equal to the input - see https://en.wikipedia.org/
wiki/Square_root

2. absolute - the unsigned magnitude of the input value - see https://en.wikipedia.org/wiki/Absolute_value

3. - - changes the input number’s sign from positive to negative or negative to positive - the same as multiplying by
-1

4. ln - natural (base e) logarithm of the input number - see https://en.wikipedia.org/wiki/Natural_logarithm

5. log10 - base 10 logarithm of the input number - see https://en.wikipedia.org/wiki/Logarithm

6. e^ - the constant e raised to the power of the input number - see https://en.wikipedia.org/wiki/Exponential_
function

7. 10^ - 10 raised to the power of the input number - see https://en.wikipedia.org/wiki/Exponentiation

2.16.6 Trigonometric Function

This value block performs the basic selected trigonometric functions. on the input numerical angles.

The functions available for selection in the drop-down list are:

1. sin - sine of the input angle - see https://en.wikipedia.org/wiki/Sine_and_cosine

2. cos - cosine of the input angle - see https://en.wikipedia.org/wiki/Sine_and_cosine

3. tan - tangent of the input angle - see https://en.wikipedia.org/wiki/Trigonometric_functions

4. asin - arc-sine of the input value - the inverse of sine.

5. acos - arc-cosine of the input value - the inverse of cosine.

6. arc-tangent (atan) of the input value - the inverse of tangent.

The functions sin, cos and tan expect the input to be in degrees. The outputs for these functions are floating point
numbers between -1 and +1 inclusive.

The inverse functions asin, acos and atan expect the input to be floating point numbers between -1 and +1. The outputs
will be in degrees ranging from -180 to +180 inclusive.

2.16. Math 95

https://en.wikipedia.org/wiki/Square_root
https://en.wikipedia.org/wiki/Square_root
https://en.wikipedia.org/wiki/Absolute_value
https://en.wikipedia.org/wiki/Natural_logarithm
https://en.wikipedia.org/wiki/Logarithm
https://en.wikipedia.org/wiki/Exponential_function
https://en.wikipedia.org/wiki/Exponential_function
https://en.wikipedia.org/wiki/Exponentiation
https://en.wikipedia.org/wiki/Sine_and_cosine
https://en.wikipedia.org/wiki/Sine_and_cosine
https://en.wikipedia.org/wiki/Trigonometric_functions

KookaBlockly Reference Guide, Release v1.10.0

See also https://en.wikipedia.org/wiki/Trigonometric_functions

2.16.7 Special Constants

This value block provides several special constants that are important and often used numbers in mathematics.

To choose a constant use the drop-down list and select from

1. - pi used in dealing with circles - see https://en.wikipedia.org/wiki/Pi

2. e - Euler’s number used in exponential function - see https://en.wikipedia.org/wiki/E_(mathematical_constant)

3. - the Golden Ratio phi - see https://en.wikipedia.org/wiki/Golden_ratio

4. sqrt(2) - the square root of 2 - see https://en.wikipedia.org/wiki/Square_root_of_2

5. sqrt(½) - the square root of ½ - see https://en.wikipedia.org/wiki/Square_root_of_2#Multiplicative_inverse

6. ∞ - infinity - see https://en.wikipedia.org/wiki/Infinity

For a list of most of the mathematical special constants see https://en.wikipedia.org/wiki/List_of_mathematical_
constants

2.16.8 Number Property Test

This value block gives a Boolean value of True or False depending on whether the numerical input value has the
chosen property or not.

The property to test is selected from the drop-down list which includes:

1. even - whether the input is divisible by 2 - see https://en.wikipedia.org/wiki/Parity_(mathematics)

2. odd - whether the input is not divisible by 2 - see https://en.wikipedia.org/wiki/Parity_(mathematics)

3. prime - whether the input is divisible only by 1 and itself - see https://en.wikipedia.org/wiki/Prime_number

4. whole - whether the input when divided by 1 leaves no remainder - see https://en.wikipedia.org/wiki/Whole_
number

5. positive - whether the input is greater than 0 - see https://en.wikipedia.org/wiki/Sign_(mathematics)

6. negative - whether the input is less than 0 - see https://en.wikipedia.org/wiki/Sign_(mathematics)

96 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

https://en.wikipedia.org/wiki/Trigonometric_functions
https://en.wikipedia.org/wiki/Pi
https://en.wikipedia.org/wiki/E_(mathematical_constant
https://en.wikipedia.org/wiki/Golden_ratio
https://en.wikipedia.org/wiki/Square_root_of_2
https://en.wikipedia.org/wiki/Square_root_of_2#Multiplicative_inverse
https://en.wikipedia.org/wiki/Infinity
https://en.wikipedia.org/wiki/List_of_mathematical_constants
https://en.wikipedia.org/wiki/List_of_mathematical_constants
https://en.wikipedia.org/wiki/Parity_(mathematics
https://en.wikipedia.org/wiki/Parity_(mathematics
https://en.wikipedia.org/wiki/Prime_number
https://en.wikipedia.org/wiki/Whole_number
https://en.wikipedia.org/wiki/Whole_number
https://en.wikipedia.org/wiki/Sign_(mathematics
https://en.wikipedia.org/wiki/Sign_(mathematics

KookaBlockly Reference Guide, Release v1.10.0

7. divisible by - whether the input when divided by the number in the second input leaves no remainder. If divisible
by is selected it will add a second input socket for the number to test against. - See https://en.wikipedia.org/wiki/
Remainder

2.16.9 Round Number

This value block rounds the numerical input value to a whole number using the chosen method.

The method is chosen from the block’s drop-down list:

1. round - rounds the number in the standard manner, if the fraction is greater than or equal to 0.5 it rounds up to
the next more positive whole number, and if the fraction is below 0.5 the block rounds down towards the negative
direction.

2. round up - if there is a fractional component the block always rounds up to the next more positive whole number.

3. round down - removes any fractional component.

Input numbers are floating point and output numbers are integers.

• round up means in the positive direction.

• round down means in the negative direction.

2.16.10 List Operations

This block computes a mathematical function based on the content of a List which is connected to the input to the
block.

The function to be used is selected from the drop-down list:

1. sum - computes the arithmetic sum of the members of the List - see https://en.wikipedia.org/wiki/Summation

2. minimum - returns the number with the minimum value from the List - see https://en.wikipedia.org/wiki/
Maximum_and_minimum

3. maximum - returns the number with the maximum value from the List - see https://en.wikipedia.org/wiki/
Maximum_and_minimum

2.16. Math 97

https://en.wikipedia.org/wiki/Remainder
https://en.wikipedia.org/wiki/Remainder
https://en.wikipedia.org/wiki/Summation
https://en.wikipedia.org/wiki/Maximum_and_minimum
https://en.wikipedia.org/wiki/Maximum_and_minimum
https://en.wikipedia.org/wiki/Maximum_and_minimum
https://en.wikipedia.org/wiki/Maximum_and_minimum

KookaBlockly Reference Guide, Release v1.10.0

4. average - returns the arithmetic mean of the items in the List - see https://en.wikipedia.org/wiki/Arithmetic_
mean

5. median - returns the arithmetic median of the items in the List - see https://en.wikipedia.org/wiki/Median

6. modes - returns a List of the most numerous items in the List (example below) - see https://en.wikipedia.org/
wiki/Mode_(statistics)

7. standard deviation - computes the statistical standard deviation of the items in the List - see https://en.wikipedia.
org/wiki/Standard_deviation

8. random item - returns an item from the List that has been selected at random - see also https://en.wikipedia.
org/wiki/Random_variable

Note: All functions except modes and random require that the input List contain only numerical or Boolean items.
Boolean items are evaluated as False = 0 and True = 1. The modes and random functions accept Lists with members
of any type, i.e. numeric integer and floating point, boolean, and character strings.

List Operations Example

This is an example of the use of modes. The input List contains [-123, 123, 123, -123]. The block returns a
List of the most numerous items in the List, being [-123, 123]. If we changed the input List to [-123, -123,
123, -123], the block would return [-123], a List of one item being the most numerous.

2.16.11 Remainder

This block returns the fractional portion of the number that results when the number at the first input is divided by the
number at the second input.

For example, when 3 is divided by 2 the result is 1.5. The remainder is the fractional portion which is 0.5.

See also https://en.wikipedia.org/wiki/Remainder

98 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

https://en.wikipedia.org/wiki/Arithmetic_mean
https://en.wikipedia.org/wiki/Arithmetic_mean
https://en.wikipedia.org/wiki/Median
https://en.wikipedia.org/wiki/Mode_(statistics
https://en.wikipedia.org/wiki/Mode_(statistics
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Remainder

KookaBlockly Reference Guide, Release v1.10.0

2.16.12 Constrain

This block constrains the number at the first input to be between the minimum number defined as the second input and
the maximum number defined as the third input.

There are three possible outputs from this block:

1. if the input number is less than the minimum number, the output will be set to the minimum number.

2. if the input is between the minimum and maximum inclusive, the number is passed through as-is.

3. if the input number is greater than the maximum number, the output will be set to the maximum number.

2.16.13 Random Integer

This block generates an integer number that is constrained to be from a minimum integer defined by the first input, and
a maximum integer defined by the second input.

For example, to simulate the roll of a six-sided die, set the minimum to 1 and the maximum to 6.

See also https://en.wikipedia.org/wiki/Random_variable

2.16.14 Random Fraction

This value block creates a random floating point number from 0 up to but not including 1.

See also https://en.wikipedia.org/wiki/Random_variable

2.16.15 Atan2 of X

This value block returns the arc tangent of two numerical values at inputs x and y .

This function is similar to calculating the arc tangent of y/x, except that the signs of both arguments are used to determine
the quadrant of the result. The result is an angle expressed in degrees in the range -180 to +180.

See also https://en.wikipedia.org/wiki/Atan2

2.16. Math 99

https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Atan2

KookaBlockly Reference Guide, Release v1.10.0

2.17 Variables

Variables are a way of creating and manipulating a named value, in the same way that algebra uses names to refer to a
value. A Variable is useful as a named container to store a value for later use in one or more places in a KookaBlockly
script.

Examples of typical Variable names are X, Y and Z when referring to cartesian coordinates; H, W and D as dimensions
of an object; and i or j as an index into a List. Variable names can of course be longer, for example height, or
temperature
When KookaBlockly is first started, or when a new script is started, the Variables palette looks like this Fig. 2.32.

Fig. 2.32: The initial Variables palette

2.17.1 Create Variable

Clicking on “Create variable” brings up a dialogue box, shown in Fig. 2.33, where the user can define the Variable’s
name. Type in a name and then click on OK. The figure shows an example name "my_variable".

Fig. 2.33: Creating a Variable named my_variable

Once a new Variable has been created, the new Variable will be available in the Variables palette.

100 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

KookaBlockly Reference Guide, Release v1.10.0

It is possible to right-click while hovering over the Variable block in the palette to reveal a number of actions which
can be selected by then clicking on them:

1. Delete the variable - removes the Variable, and its associated blocks if it was the only Variable.

2. Rename the variable - brings up a dialogue box, as for creating a Variable, in which the new name can be
typed. The new name must contain at least one visible character and not be the same as any other Variable.

3. Help - this option does not yet work. It is intended eventually to display Help text.

2.17.2 Set Variable

Using this block, a value can be assigned to a Variable by attaching a value block to its input. The value can be a
number, a boolean, or a character string.

The Variable to be assigned the value can be selected from the drop-down-list.

The drop-down list also has some other choices:

1. Rename variable - brings up a dialogue box in which the new name can be typed. The new name must comprise
at least one visible character and must not be a duplicate name.

2.17. Variables 101

KookaBlockly Reference Guide, Release v1.10.0

2. Delete the variable - removes the Variable and its associated blocks from the script.

2.17.3 Change Variable

This action block allows the user to change the selected Variable by a number specified by the input numerical value.

This block will only work for numerical variables and will only accept numerical values.

Character strings and boolean values will not be accepted.

The example in Fig. 2.34 illustrates how this block may be used as a counter.

Fig. 2.34: Example script counts button presses

Three variables are set up: count_b, count_c and count_d to count the number of times buttons B, C and D are
pressed.

The running totals are printed on the Kookaberry’s display, as shown in Fig. 2.35.

Fig. 2.35: The Kookaberry display resulting from Fig. 2.34

102 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

KookaBlockly Reference Guide, Release v1.10.0

2.17.4 Variable Value

This value block allows a user to attach a variable’s value to the input of another block.

The example in Fig. 2.36 reads a temperature from a sensor once per 5 seconds, storing it in a Variable named
"temperature", then using the stored value to perform a conversion calculation and display the original and con-
verted values on the Kookaberry display:

Fig. 2.36: Example script reads converts temperature readings to Fahrenheit

2.18 Functions

Functions are blocks that contain a sequence of other blocks.

Once defined, functions are available on the Functions palette for use in the KookaBlockly script in which they are
defined. See Fig. 2.37.

Fig. 2.37: The initial Functions palette

Function blocks can be used repeatedly in a script without needing to repeat all the blocks they contain. This simplifies
scripts and saves valuable computer memory space.

2.18. Functions 103

KookaBlockly Reference Guide, Release v1.10.0

Important: The function definition must remain in the KookaBlockly workspace for it to remain available in the
Functions palette. Deleting the function definition will remove the function block from the palette and all instances of
it from the script.

2.18.1 Define Function

This block allows a user to define a sequence of blocks that will be run together when the function’s block is used.

To define a function, drag this block into the KookaBlockly workspace.

The block has a gear wheel which when clicked causes the definition box to appear:

Once the definition of the function block is complete, click on the cog symbol once again to close the definition box.
Remember to leave the function definition block in the KookaBlockly workspace!

The function block will then be available in the palette for use elsewhere in the script:

104 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

KookaBlockly Reference Guide, Release v1.10.0

Define Inputs

A function may, or may not, have inputs that will be used by the script inside the function.

To define the inputs, drag the input block on the left of the box into the bracket on the right.

To remove an input, drag the input block out of the bracket back to the grey box on the left.

Rename the inputs as desired by editing their names (click on the name and type the new name). It is best to give the
inputs names that are meaningful so the KookaBlockly script can be more easily understood by humans.

All the inputs will become Variables, do take care not to duplicate their names!

2.18. Functions 105

KookaBlockly Reference Guide, Release v1.10.0

Function Name

Functions must have unique names within the context of the KookaBlockly script they are in.

To define the function name, click on its name and edit the text.

Function Description

Functions can optionally be described. A description may say what the function does, what its inputs are, what com-
putations it performs, and what its output is.

Click on the question mark, ?, and a description box will appear. Type the description in the box.

To close the description box, click on the question mark.

To view the description, click on the question mark and click again to close the description.

106 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

KookaBlockly Reference Guide, Release v1.10.0

2.18.2 Define Function with Return Value

This block works in a similar manner to the Define Function block except that this block returns a value.

The value returned is the output of the value block socketed at the bottom of the Define Function with Return Value
block.

Here is an example where a function is defined to calculate the circumference of a circle given a radius:

Once the definition of the function block is complete, click on the cog symbol once again to close the definition box.
Remember to leave the function definition block in the KookaBlockly workspace!

The function block will then be available in the palette for use elsewhere in the script:

2.18.3 If Condition Return

This block can be used in both the Function Definition and Function Definition With Return Value blocks.

It will check the True / False condition in the first value block input and if it is True it will end the function immediately,
returning the value in the second input .

If used inside a Function Definition block (without a return value) the returned value input will not be available. Instead
the block will just end the function if the input condition is True.

This block cannot be used outside of the Function Definition blocks. If this is attempted the block will be blanked out.

2.18. Functions 107

KookaBlockly Reference Guide, Release v1.10.0

The following is an example of the use of the If Condition Return block with a function named direction.

The function tests the sign of the acceleration read from the Z axis of the internal accelerometer. If Z acceleration is
negative then the tested condition is True which means the Kookaberry is facing up, and the string "up" is returned.
Otherwise, that is the condition is False, which means the Kookaberry is tilted face-down. The function completes
and returns the string "down".

The main script is a loop which repeats every second and prints the value of the function on the display. The display
will change as the Kookaberry is oriented face-up or face-down.

2.19 Advanced

The Advanced Category is provided to extend the capability of KookaBlockly by allowing the definition of additional
blocks using Python programming statements. See Fig. 2.38.

Fig. 2.38: The Advanced block palette

This category is available to the more advanced user as a way of transitioning from KookaBlockly to Python scripts,
and also to add extended functionality such as using special sensors and actuators and other Kookaberry peripherals,
or using Python module libraries.

Important: When typing in the Python statement, please do not use the single quotation mark ' as this will cause the
saved script to not be loaded back in from file correctly. Always use the double quotes " character, as in the example

108 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

KookaBlockly Reference Guide, Release v1.10.0

shown at the end of this section.

2.19.1 Python Value

This value block allows the result of any Python statement to be passed to KookaBlockly block input sockets.

The Python statement is typed into the text box in the block. In the default block, the statement 1+1 results in the output
value of 2.

2.19.2 Python Action

This action block permits any Python statement to be inserted into a KookaBlockly script. The statement is typed into
the text box in the block.

Typical usage might be to import a library module, for example “import math”, or “import mymodule" where a
customised module has been developed, or anything else that is permitted in Python syntax.

It can also be used to insert comments into the script by prefixing the inserted text with a # character, designating that
the following text is a comment.

2.19. Advanced 109

KookaBlockly Reference Guide, Release v1.10.0

2.19.3 Advanced Example

KookaBlockly does not, at this stage, provide any blocks to read a text file.

This example reads a plain text file using the Advanced blocks and prints each line that is read on the display.

This script uses two Python Action blocks to insert in-line comments in the KookaBlockly and the resulting MicroPy-
thon script.

Three variables need to be created:

1. filename which is set to a string containing the files’ name "my_file.txt"

2. f which is used to store a List of lines coming from the text file

3. line which temporarily stores each line from the file as they are read in the loop.

Only one Python Value block is needed that sets the variable f to a List of lines created by opening the text file using
a Python statement.

The MicroPython code that the KookaBlockly script generates is shown below.

import machine, kooka
import fonts

filename = None
f = None
line = None

On-start code, run once at start-up.
if True:
Open the text file for reading
filename = 'my_file.txt'
kooka.display.setfont(fonts.mono6x7)
kooka.display.print('Printing', filename, show=0)
f = open(filename,'rt')
Loop that reads and prints each line of the file

(continues on next page)

110 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

KookaBlockly Reference Guide, Release v1.10.0

(continued from previous page)

for line in f:
kooka.display.print(line, show=0)

kooka.display.print('End', show=0)

Main loop code, run continuously.
while True:
kooka.display.show()
machine.idle()

To run the above script, a text file called my_file.txt should be stored on the Kookaberry’s file system in its root
folder. The file contains the following:

This is line 1
Line 2
This is line 3
Line 4
The last line

When the script is run, the appearance of the Kookaberry display is as below:

2.19. Advanced 111

KookaBlockly Reference Guide, Release v1.10.0

112 Chapter 2. Part 2 - KookaBlockly Function Blocks Reference

CHAPTER

THREE

GLOSSARY OF TERMS

This glossary contains the definitions of terms used throughout this KookaBlockly Reference Guide and is intended to
demystify the vocabulary often used in association with computers and software.

Kookaberry
The Kookaberry is a microcomputer specifically designed for STEM educational applications. See https://
learn.auststem.com.au/exploring-the-kookaberry/

KookaSuite
A suite of programming tools for the Kookaberry comprising KookaBlockly visual coding tool, KookaIDE a
MicroPython integrated development tool, and KookaTW a tool for mirroring / virtualising the Kookaberry’s
display and buttons.

Visual Code Editor
A visual code editor allows users to work with code visually but still involves actual code blocks or snippets. It
might use drag-and-drop interfaces, code blocks, or other visual elements to assist in code creation. Visual code
editors often aim to make coding more accessible to beginners or those who are not familiar with traditional
text-based coding environments. It differs from a graphical code editor that may involve more abstract graphical
representations of code structures, while visual code editors usually retain a connection to the actual code, using
visual elements to enhance the coding experience. See also https://en.wikipedia.org/wiki/Visual_programming_
language

OLED
Organic Light Emitting Diode - the lighting technology that is used in the Kookaberry’s display - see https:
//en.wikipedia.org/wiki/OLED

LED
Light Emitting Diode - a semiconductor that emits a specific wavelength of light when energised. The Kook-
aberry has three LEDs on the front under the display. They emit red, yellow and green light. There are two
further LEDs on the back: a green LED indicating the Kookaberry has power, and a blue LED which indicates
file writing activity, or if pulsing slowly indicates the Kookaberry’s power supply voltage is low. See also:
https://en.wikipedia.org/wiki/Light-emitting_diode

GPIO
General Purpose Input and Output - the electrical signals to and from a microcomputer are connected by these,
and are referred to as Pins by KookaBlockly. See also https://en.wikipedia.org/wiki/General-purpose_input/
output

USB
Universal Serial Bus - a communications and power connection used by the Kookaberry to communicate with
the programming personal computer, and the receive power. See also https://en.wikipedia.org/wiki/USB.

MicroPython
A variant of the computer programming language Python developed for use on micro-computers. The Kook-
aberry is programmed using MicroPython and has a built-in compiler accessible through editors such as

113

https://learn.auststem.com.au/exploring-the-kookaberry/
https://learn.auststem.com.au/exploring-the-kookaberry/
https://en.wikipedia.org/wiki/Visual_programming_language
https://en.wikipedia.org/wiki/Visual_programming_language
https://en.wikipedia.org/wiki/OLED
https://en.wikipedia.org/wiki/OLED
https://en.wikipedia.org/wiki/Light-emitting_diode
https://en.wikipedia.org/wiki/General-purpose_input/output
https://en.wikipedia.org/wiki/General-purpose_input/output
https://en.wikipedia.org/wiki/USB

KookaBlockly Reference Guide, Release v1.10.0

KookaIDE and Thonny. KookaBlockly automatically generates MicroPython code when the user assembles
a script from KookaBlockly’s visual blocks. See also https://en.wikipedia.org/wiki/MicroPython

Python
A high-level computer programming language that was designed to be easy to use and easily comprehended.
It nonetheless is a very powerful language and is now favoured by educational institutions as the first-taught
computer language. See also https://en.wikipedia.org/wiki/Python_(programming_language)

IDE
Integrated Development Environment - a software application that integrates code editing, testing and sometimes
code debugging tools. Examples relevant to KookaBlockly and the Kookaberry are KookaIDE and Thonny.
See also https://en.wikipedia.org/wiki/Integrated_development_environment

STEM
Science, Technology, Engineering and Mathematics - an umbrella term to group these disciplines in the context
of education and career development. See also https://en.wikipedia.org/wiki/Science,_technology,_engineering,
_and_mathematics

Raspberry Pi Pico
A microcomputer developed by the Raspberry Pi Foundation based on their RP2040 microprocessor chip.
The RP2040 microprocessor chip is used in later hardware versions of the Kookaberry. See also https://en.
wikipedia.org/wiki/Raspberry_Pi

STM
STMicroelectronics N.V. commonly referred to as ST or STMicro is a multinational corporation and technol-
ogy company of French-Italian origin. STM microprocessors are used in the original hardware version of the
Kookaberry. See https://en.wikipedia.org/wiki/STMicroelectronics and https://en.wikipedia.org/wiki/STM32

Micro:Bit
A microcomputer for STEM applications developed in the United Kingdom by the BBC (British Broadcasting
Corporation). It also is programmed using MicroPython, and has two official visual programming tools, being
Microsoft MakeCode, and Scratch. The Micro:Bit differs from the Kookaberry in that it can contain only
one program at a time, it has just two buttons and an 8x8 LED matrix display, and it has no electrical sockets
with which to connect peripherals, relying instead on using alligator clips or an expansion board. See also
https://en.wikipedia.org/wiki/Micro_Bit and https://en.wikipedia.org/wiki/Scratch_(programming_language)

Windows
A personal computer operating system licensed by Microsoft. KookaSuite will run on Windows V10 and later
versions. See https://en.wikipedia.org/wiki/Microsoft_Windows

MacOS
A personal computer operating system developed by Apple. KookaSuite will run on MacOS V13 and later
versions using the Intel and Apple’s M processors. See also https://en.wikipedia.org/wiki/MacOS

Raspbian
Latterly named Raspberry Pi OS, a personal computer operating systems for the Raspberry Pi microcomputer
licensed by the Raspberry Pi Foundation. Raspbian is based on the Debian Linux operating system. See also
https://en.wikipedia.org/wiki/Raspberry_Pi_OS

Thonny
An open-source Integrated Development Environment tool tailored for programming in Python. See https:
//en.wikipedia.org/wiki/Thonny

Firmware
Low-level computer software that is stored on on-board non-volatile memory. It performs basic low-level tasks to
control and monitor the computer hardware, and to make it accessible to high-level software, such as MicroPy-
thon. Firmware updates may sometimes be issued that extend the functionality of a computer, or to remedy
bugs or security weaknesses in the firmware. The Kookaberry’s firmware is updated from time to time for the
same reasons. See also https://en.wikipedia.org/wiki/Firmware

114 Chapter 3. Glossary of Terms

https://en.wikipedia.org/wiki/MicroPython
https://en.wikipedia.org/wiki/Python_(programming_language
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Science,_technology,_engineering,_and_mathematics
https://en.wikipedia.org/wiki/Science,_technology,_engineering,_and_mathematics
https://en.wikipedia.org/wiki/Raspberry_Pi
https://en.wikipedia.org/wiki/Raspberry_Pi
https://en.wikipedia.org/wiki/STMicroelectronics
https://en.wikipedia.org/wiki/STM32
https://en.wikipedia.org/wiki/Micro_Bit
https://en.wikipedia.org/wiki/Scratch_(programming_language
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/Raspberry_Pi_OS
https://en.wikipedia.org/wiki/Thonny
https://en.wikipedia.org/wiki/Thonny
https://en.wikipedia.org/wiki/Firmware

KookaBlockly Reference Guide, Release v1.10.0

Real Time Clock (RTC)
A specialised clock chip that keeps precise time. RTCs can be built into a microcomputer and / or be connected
externally. Often external RTCs have a small battery that keeps the clock running when the microcomputer is
turned off. The microcomputer can then synchronise its internal RTC with the battery-powered external RTC.
See also https://en.wikipedia.org/wiki/Real-time_clock

ASCII
American Standard Code for Information Interchange - a character encoding standard for electronic communica-
tion. ASCII codes represent text in computers, telecommunications equipment, and other devices. MicroPython
uses ASCII code when encoding character strings. See also https://en.wikipedia.org/wiki/ASCII

CSV
Comma-Separated-Values - a text file format in which each line contains alphanumeric text data which are sep-
arated by commas. The first line of the files can be used to represent headings for the data item columns that are
in the following lines. CSV formatted files are recognised and can be directly opened by spreadsheet programs.
See also https://en.wikipedia.org/wiki/Comma-separated_values

GitHub
A software platform that allows developers to create, store, and manage their code. GitHub was acquired by
Microsoft in 2018. It is commonly used to host open-source software development projects. KookaSuite and
the Kookaberry firmware are both distributed using GitHub. This document is also maintained and distributed
using GitHub and Read the Docs. See also https://en.wikipedia.org/wiki/GitHub

Read the Docs
Read the Docs is an open-source free software documentation repository and hosting platform. This document
is hosted on Read the Docs. See also https://en.wikipedia.org/wiki/Read_the_Docs

Open-Source
Open source is software source code, hardware designs, documentation, artworks or other intellectual products
that are made freely available for possible modification and redistribution, under certain licensing conditions, in
a spirit of sharing and collaboration for the greater good. See also https://en.wikipedia.org/wiki/Open_source

Software and Hardware
Software is a collection of programs and data that tell a computer how to perform specific tasks. Software often
includes associated software documentation. This is in contrast to hardware, which comprises the physical
components from which the system is built and which actually performs the computing work. See also https:
//en.wikipedia.org/wiki/Software and https://en.wikipedia.org/wiki/Computer_hardware

Example Scripts
All the scripts used in this guide are available for downloading from Github and following the in-
structions on the README page:

Errata
If errors or issues are found in the KookaBlockly Reference Guide please post an issue on GitHub.

Copyright
Blockly is a library from Google for building beginner-friendly block-based programming languages.

Kookaberry and Kooka are trademarks of Kookaberry Pty Ltd, Australia.

The Kooka Firmware release v1.10.0 and KookaSuite were created by Damien George (George
Electronics Pty Ltd – MicroPython) in collaboration with Kookaberry Pty Ltd and the AustSTEM
Foundation Ltd.

115

https://en.wikipedia.org/wiki/Real-time_clock
https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/Comma-separated_values
https://en.wikipedia.org/wiki/GitHub
https://en.wikipedia.org/wiki/Read_the_Docs
https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Computer_hardware
https://github.com/TDStrasser/KookaBlockly-Reference/tree/9823056ad87da55329b65082e39b0654e418a5e6/examples
https://github.com/TDStrasser/KookaBlockly-Reference/issues

KookaBlockly Reference Guide, Release v1.10.0

116 Chapter 3. Glossary of Terms

INDEX

A
ASCII, 115

C
CSV, 115

F
Firmware, 114

G
GitHub, 115
GPIO, 113

I
IDE, 114

K
Kookaberry, 113
KookaSuite, 113

L
LED, 113

M
MacOS, 114
Micro:Bit, 114
MicroPython, 113

O
OLED, 113
Open-Source, 115

P
Python, 114

R
Raspberry Pi Pico, 114
Raspbian, 114
Read the Docs, 115
Real Time Clock (RTC), 115

S
Software and Hardware, 115
STEM, 114
STM, 114

T
Thonny, 114

U
USB, 113

V
Visual Code Editor, 113

W
Windows, 114

117

	Part 1 - Working With KookaBlockly
	Introduction to KookaBlockly
	KookaBlockly: Visual Programming Editor for Kookaberry Microprocessor Boards
	Key Features
	Programming With KookaBlockly
	AustSTEM Learning Hub

	Installing KookaBlockly
	Downloading KookaSuite
	Installing KookaSuite on Microsoft Windows
	Installing KookaSuite on MacOS
	Installing KookaSuite on Raspberry Pi
	Script Folders
	KookaBlockly Updates
	Editing KookaBlockly Scripts Using KookaIDE

	Using the KookaBlockly Application
	Version
	Resize / Exit
	Workspace
	Blocks Palette
	Script Controls
	Inspection Buttons
	Connection
	Script Selection
	Scroll Bars, Centre, Zoom and Trash

	KookaBlockly Conventions
	Block Shapes
	Block Configuration
	Right-clicking
	Text Delimiters
	Deleting Blocks

	Part 2 - KookaBlockly Function Blocks Reference
	Control
	On Start
	Scheduled Loop
	Every Loop
	Exit Program
	Sleep
	Time (s)
	Time (ms)

	Clock
	Internal Clock
	Get Clock – Simple Time
	Get Clock - Extended Time
	Set Clock from Character String

	External Clock
	External Clock’s Pins Connections
	Get External Clock - Simple Time
	Get External Clock – Extended Time

	Set Internal Clock from External Clock
	Set External Clock from Internal Clock
	Set External Clock from Character String

	Display
	Kookaberry Display
	Text coordinates
	Display Clear
	Display Show
	Display Set Font
	Display Print
	Display Print-and
	Display Pixel
	Display Line
	Display Rectangle
	Display Text
	Display Image

	Buttons
	When Button Was Pressed
	When Button Is Pressed
	Button was pressed
	Button is pressed
	Button to Exit Program

	LEDs
	Turn ON LED
	Turn OFF LED
	Toggle LED
	Set NeoPixel

	Pins
	Pin Turn ON
	Pin Turn OFF
	Pin Toggle
	Set Pin to Digital Value
	Get Pin Digital Value
	Get Pin Voltage
	Get Pin Voltage as Percentage of Maximum
	Set Pin to Voltage
	Set Pin to Percentage of Maximum
	Pin – Pulse Width Modulation (PWM)

	Sensors
	Internal Sensors
	Get Accelerometer (raw)
	Get Accelerometer (scaled)
	Get Compass

	External Sensors
	Sensors’ Pins Connections
	Get Temperature from DS18x20
	Get Temperature from NTC
	Get Temperature or Humidity from DHT11 or DHT22
	Get Temperature / Humidity / Pressure from BME280
	About The BME280 Sensor

	Get Acceleration / Compass Strength from LSM303
	About the LSM303 Sensor

	Get LUX from VEML7700
	About the VEML7700 Sensor

	Get Power / Voltage / Current from INA219
	About the INA219 Sensor

	Get Soil Moisture
	About Soil Moisture Sensors

	More Sensor Learning Resources

	Actuators
	Actuators’ Pins Connections
	Set Servo to Angle
	Set Servo to Angle Taking Seconds
	Set Servo to Speed
	Set Servo to Speed Taking Seconds
	More Actuator Learning Resources

	Radio
	Internal Radio
	When Radio Receive
	Radio Read
	Radio Send
	Set Radio channel
	Set Radio Parameter

	External Radio
	When HC-12 Receive
	HC-12 Read
	HC-12 Send
	HC-12 Send and
	HC-12 Set Channel

	Logging
	Clear File
	Log To File

	Boolean
	Comparison
	Boolean And / Or
	Not
	True / False
	Null
	Test If

	If–Else
	If-Do
	If-Do-Else-Do
	If-Do-Else If-Do-Else-Do
	If-Do Configuration

	Loops
	Loop Repeat
	Loop Repeat While / Until
	Count With Variable From-To-By
	Count With Variable Example

	For Each Item In List
	Break / Continue Loop

	Strings
	Text
	Format as Integer
	Format as Floating Point
	Convert to Integer
	Convert to Float

	Lists
	Create List
	Create List Example

	Create List With Item Repeated No. of Times
	Length Of List
	Is Empty
	In List Find First / Last Occurrence of Item
	In List Find Example

	In List Get / Remove Item
	In List Get / Remove Examples

	In List Set / Insert Item
	In List Set / Insert Example

	In List Get Sub-List
	Get Sub-List Example

	Make List / Text With Delimiter
	Make List / Text Examples

	Sort List
	Sort List Example

	Math
	Number
	Number Example

	Arithmetic
	Arithmetic Example

	Multiply and Add
	Scale Function
	Scale Example

	Math Function
	Trigonometric Function
	Special Constants
	Number Property Test
	Round Number
	List Operations
	List Operations Example

	Remainder
	Constrain
	Random Integer
	Random Fraction
	Atan2 of X

	Variables
	Create Variable
	Set Variable
	Change Variable
	Variable Value

	Functions
	Define Function
	Define Inputs
	Function Name
	Function Description

	Define Function with Return Value
	If Condition Return

	Advanced
	Python Value
	Python Action
	Advanced Example

	Glossary of Terms
	Index

